
Towards studying Service Function Chain Migration
Patterns in 5G Networks and beyond

Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Miloud Bagaa1, Tarik Taleb1,4

and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland

4 Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland.

Abstract—Given the indispensable need for a reliable network
architecture to cope with 5G networks, 3GPP introduced a covet
technology dubbed 5G Service Based Architecture (5G-SBA).
Meanwhile, Multi-access Edge Computing (MEC) combined
with SBA conveys a better experience to end-users by bringing
application hosting from centralized data centers down to the
network edge, closer to consumers and the data generated by
applications. Both the 3GPP and the ETSI proposals offered
numerous benefits, particularly the ability to deliver highly
customizable services. Nevertheless, compared to large data-
centers that tolerate the hosting of standard virtualization
technologies (Virtual Machines (VMs) and servers), MEC nodes
are characterized by lower computational resources, thus the
debut of lightweight micro-service based applications. Motivated
by the deficiency of current micro-services-based applications to
support users’ mobility and assuming that all these issues are
under the umbrella of Service Function Chain (SFC) migrations,
we aim to introduce, explain and evaluate diverse SFC migration
patterns. The obtained results demonstrate that there is no
clear vanquisher, but selecting the right SFC migration pattern
depends on users’ motion, applications’ requirements, and MEC
nodes’ resources.

I. INTRODUCTION

The 3GPP has adopted a new architecture, based on micro-
services and web principles, dubbed 5G-SBA [1]. The SBA
allows the 5G network to be flexible, reusable, and customiz-
able, as it leverages on network functions (NFs) [2]. Having
such a strong proposal derives the necessity of an efficient
orchestration system where Network Function Virtualization
(NFV) and Software-Defined Networking (SDN) are expected
to be a key future target for allowing a fast and reliable
NFs’ programmability [3]. Nonetheless, among new industry
use cases targeted by the 5G, there exist scenarios that go
beyond what the current device-centric mobility approaches
can support. The mobility of low latency communication ser-
vices, shared by a group of moving devices, e.g., autonomous
vehicles that share sensor data, is a prime example of these
cases. These use-cases’ demands for ultra-low latency can be
addressed by leveraging the MEC concept [4]. By allowing
the instantiation of applications nearby to the network edge, in
the vicinity of users, MEC is acknowledged as one of the key
pillars for meeting the demanding Key Performance Indicators
(KPIs) of 5G [5].

However, compared to large data-centers that tolerate the
hosting of standard virtualization technologies (VMs and

servers), MEC nodes are characterized by lower computa-
tional resources. Furthermore, different standards development
organizations are heavily pushing towards adopting micro-
services approaches and architectures [6], [7]. Therefore,
when compared to traditional VMs [8] based on quick de-
ployment, startup time, fast replication, live service migration,
and scaling methods, container technologies form the ideal
alternative for both MEC environments and emerging concepts
of micro-services.

Both 3GPP and ETSI proposals offered numerous benefits,
particularly the reduction of the network latency. However,
users nowadays are everything except motionless, which in-
duces a serious lack of flexibility and may take users far away
from the original MEC node where their service started run-
ning, to overcome this problem, a new concept, dubbed Follow
Me Cloud (FMC) [9], [10], has been introduced. The FMC
permits services’ movabilities amid different MEC nodes
while ensuring low latency communications to end-users, as
an FMC is a single instance moving in concordance with the
end-user. Moreover, the type of services running in the Data
Network (DN), which was ignored by telecommunication
standardization entities, is expected to be a micro-service
one. Therefore, as modern services may expand over multiple
MECs, which introduces new issues – the management of
instances on different MECs instead of one compared to
the FMC – to ensure service continuity, links between the
instances forming distributed MEC applications, additionally
to links related to end-users, must be taken into account.
Based on these observations, and assuming that all these issues
are under SFC’s migration umbrella, the contributions of this
paper can be summarized as follows:

• The introduction of four practical SFC migration patterns
to support micro-service based applications in the DN
part from the proposed combined architecture of 3GPP
and ETSI;

• A detailed evaluation of the proposed patterns, where
different criteria will be considered to validate the new
suggested type of migrations;

• A final comparison is presented to determine the most
suitable SFC migration pattern within the 5G network.

The remainder of this paper is organized as follows. Sec-



tion II outlines the related works. Various SFC migrations
patterns with their respective design overview and the suit-
able implementation are presented in Section III. Section IV
illustrates the experimental setup and discusses the obtained
results. Finally, we conclude the paper and introduce future
research challenges in Section V.

II. RELATED WORK

Machen et al. [11] presented a multi-layer framework for
migrating active applications in the MEC, their results show
reduced total migration times, the downtime was considerable
with an average of 2s in case of a blank container. The increase
of the downtime is due to the non-use of the iterative approach
in the live migration process. The authors of [12] proposed
and evaluated three different mechanisms to improve the end-
user experience by using the container-based live migration,
their results show the efficiency of these solutions compared
to prior works. Addad et al. [13] presented a framework
for managing reliable live migrations of virtual resources
across different Infrastructure as a Service (IaaS), handling
unexpected cases while ensuring high QoS and a very low
downtime without human intervention. The authors considered
the inter-cloud migration by leveraging the SDN technology
for traffic steering and re-direction, in addition to multiple
migration processes.

Sun et al. [14] investigated how to migrate multiple corre-
lated instances of VMs, defining the relationship only among
concurrent migrated VMs. Haikun and Bingsheng [15] have
presented a Coordinated Live Migration of Multi-Tier Appli-
cations in Cloud Environments, they detailed the difference
of a single-VM migration, compared to VMs in a multi-tier
application followed by a formulation of a correlated VM
migrations problem. The authors designed and implemented a
coordination system that can be used as a basis for enabling
one of the desired strategies of SFC migration related to the
network control part. However, the authors did not investigate
the use of micro-services based technologies (containers) that
are expected to be playing an essential role in the 5G and
beyond networks.

With respect to the previously cited works, in this study,
we introduce complete SFC migrations patterns, the SDN im-
plication, and the inter-cloud live migration. Seeing that new
use-cases entrance will beget a highly mobile environment
and reduce the latency, this work is a must for achieving the
1 ms latency objective for the upcoming 5G mobile systems
and beyond.

III. SERVICE FUNCTION CHAINS MIGRATIONS PATTERNS
FOR BEYOND 5G NETWORKS

A. Main architecture and problem formulation

Usually, a three-layer cloud-based architecture can be rep-
resented as a general 5G architecture, where the core layer is
a robust computing power setup from different vendors, e.g.,
Azure, Rackspace, and private clouds based on OpenStack,
while the MEC layer hosts container-based technologies, e.g.,
LXC, LXD, Docker, and Rocket, given the insufficiency of

computational resources to serve the users layer. For the
simplicity’s sake, we omit the core layer in this representation,
moreover, we can host the MEC orchestrator in the core layer
to allow a global view of all entities present in the MEC
layer. Normally, the locations of the DNs and the User Plane
Functions (UPFs) are the choice of the network operator.
Though, because of a lack of trust between operators and
to guarantee the most common architecture in a real case,
the first deployment scenario presented in [2] is adopted. We
assume that we have a connected car management scenario,
i.e., it can be a drone-based management scenario as well,
the connected car moves from a location to another one, from
MEC1 to MEC2 in Fig. 1. Initially, the car is served by a
set of network functions (NFs) in perfect coordination and
synchronization that form an SFC, i.e., Service Function
Chain 1, in Fig. 1. This SFC1 can deliver a secure video
streaming service whither the n− 1 NFs are security checks
as firewall and IPS; while the remaining NF is the video server
streamer. To follow end-users’ mobility, the SFC needs to be
shifted away, i.e., live migrated, while conserving all links
and communication between NFs forming the moving SFC.
The main focus is to implement the SFC migration patterns,
to ensure a seamless migration across MEC nodes, without
taking into account other use-case-specific aspects, such as
the signal strength received by each vehicle, user equipment
(UE) or UAV, and the traffic steering done by the UPF within
the 3GPP domain.

Fig. 1: Service Function Chain Migration to support micro-
service based application in the Data Network

To validate our proposed architecture, we need to synchro-
nize multiple live migrations. Initially, we start our blueprint
by presenting all the envisaged SFC migration scenarios, how
we synchronize NFs’ migration, what is the gain and the
different constraints and finally decide the approach to ratify
to meet 5G’s low latency requirements based on evaluation in
Section IV.

B. Asynchronous State-full Service Function Chain Migration

In this type of SFC migration, we start unsupervised live
migrations for each SFC’s NF, and as the last live migration
end, we finish the SFC migration. Then, we can reestablish the
NFs’ network connectivity. We use this scenario as a worst-
case upper-bound to evaluate the computational, i.e., CPU,
RAM, and DISK and communication network resources, i.e.,
delay, and bandwidth consumption for the SFC migration.



C. Synchronized State-full Service Function Chain Migration

The first approach is considered a trivial solution that may
consume all types of available resources, thus, we introduce
the synchronized SFC migration. The well known live migra-
tion process usually takes four steps, disk copy, non-blocking
memory copy (pre-dump actions in CRIU [16]), final blocking
memory copy (dump action in CRIU), and restore. While we
can do the first two steps without stopping the virtualized
instances, the third step must freeze containers until the final
step restore it afterward. Thus, a synchronized SFC migration
approach aims to efficiently control each step separately, as
this fine-grained control reduces the overall system resource
consumption. Albeit different strategies can be employed to
eliminate the system overhead caused by multiple coordinated
and parallel migration processes, we selected two patterns to
be presented, for both patterns we consider an SFC with two
NFs:

1) Synchronized Wait-For-Me Pattern: In this strategy, we
allow the first and second steps of the migration process to
run in parallel, and we have a barrier just before the final
memory blocking action, i.e., dump. Then both instances have
to wait to continue their migration process. We can observe
the benefits of this approach in scenarios with plenty of
network resources. However, as the size of the virtualizations
instances is rarely the same or even equivalent, the first
instance reaching the memory blocking phase may have to
wait for a long period, this will result in a bigger downtime
as the time for waiting, other memory pages could be updated
easily. Also the CPU, in that case, can be exhausted as the
actions are in a parallel fashion.

2) Synchronized Round-Robin Pattern: The Round-Robin
strategy aims to reduce the migration CPU load, we achieve
this through grouping by phase the steps of an SFC migration
and then executing them in-order. This approach reduces
consumption of system resources caused by an SFC migration,
albeit at a significantly higher total migration time, as we do
all actions sequentially and as previously, this SFC migration
strategy uses all available network resources.

D. Network-aware based Service Function Chain Migration

5G networks are expected to support various URLLC’s
services, which requires strict delay constraint. However, none
of the previous approaches can guarantee these prerequisites
because of the randomized way for handling SFC migration
when it comes to network resources. Indeed, having a huge
number of applications capable of following and serving
users can compromise all network resources among MECs by
allowing a large number of migrations at the same time. We
propose the network-aware based SFC migration to address
these requirements, as its purpose is to refine the network
usage, reducing the overhead, and enabling better users’ QoE.
By controlling the network’s bandwidth, our network-aware
based SFC migration triggers low-consumption migration
operations across the networks. Initially, we gather all the
available information on bandwidth and latency between each
pair of MEC nodes, thus obtaining a global knowledge of

the distributed infrastructure. Then, after each migration’s
decision is taken, given network resources are reserved to
allow that migration and better usage of the global bandwidth.
Finally, our network-aware solution frees the used resources
as it completes SFC migrations. It is noticed that when
using rsync, the whole bandwidth is used by one process.
But upon other processes start a network transfer operation
(either migration or simple traffic), the bandwidth will be
shared among all the processes using the best-effort policy.
Thus based on this observation, if we start “n” migrations
simultaneously, the bandwidth usage will be shared among
them. Through a qualitative assessment, we can observe that
if “n” becomes too big, then the migration time will tend to
the infinity, which will result in a fiasco to network operators.
We also emphasize that we reserve bandwidth for each SFC
migration based on the last iteration, that stops the container.
Thus, if the reserved bandwidth offers a downtime transfer
similar to when having the full utilization of the bandwidth
then the reservation’s limit is set.

E. Implementation

Fig. 2: Architecture of the implementation.

Enabling the migration of multiple independent virtual
instances can be relatively easy when compared to migrating
several instances with a close relationship (SFC). Initially,
before enabling an SFC migration, the creation and the
formation of an SFC is the starting point of interest. As
a testing SFC implementation is unavailable, we design a
service chain for a video streaming application. In this SFC,
each video passes through an intermediate traffic redirection
node, built on top of an LXC container and has two SDN-
enabled network interfaces. This redirection instance acts as
a turnaround node in the network where the integrality of
the traffic should go through in both directions, i.e., from the
video server to the client and vice versa as depicted in Fig. 2.

As stated before, our solution considers using the SDN
paradigm thus, OVS switches are configured using the ONOS
SDN controller, where each node in the SFC has its own
switch. The only requirement is the availability of the vir-
tualization software to deploy LXCs container engine and
programmable switches OVSs. We use our previous proposed
solution, presented in [13], to allow better isolation between



incoming/out-coming traffic. To implement the turnaround
logic in the Dummy-LXC host, a Bridge is created inside the
Dummy-LXC container (the Red Bridge in Fig. 2). Two outer
network interfaces, veth0 and veth1, respectively, are plugged
in the outside OVS (the blue one in the same Figure); and
inner network interfaces named eth0 and eth1 are attached to
the red Bridge in their turn.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated our proposed SFC migration
schemes using one physical server. The server has 48 cores
with VT-X support enabled, 256 GB of memory, 1Gbps inter-
connection, and Ubuntu 16.04 LTS with the 4.4.0-77-generic
kernel and QEMU-KVM installed. Two virtualized computer
nodes were used to evaluate the proposed implementation.
Each one representing a different MEC node (i.e. a DN node
in ETSI and 3GPP proposals). The first VM is acting as a
source DN and the latter VM represents the target DN. Each
DN uses Ubuntu 16.04 LTS with the 4.4.0-64-generic kernel
and has 16 virtual core CPU and 32GB of main memory. The
container environment was setup using LXC 2.8 and CRIU
3.11. It is noticed that two additional hosts were used for the
management plane. The first host acts as an SDN controller
that manages the communications between the different DNs.
As SDN controller, we used ONOS, however, any other SDN
controller could be used as well. While the second host
serves as a global orchestrator for handling the life-cycle of
SFCs (i.e. from the creation phase till the migration or the
deletion stage). It is noteworthy that the global orchestrator
uses an enhanced version of MIRA!, a framework previously
presented in [13], that support our proposed SFC migration
patterns and schemes.

We start by evaluating the Asynchronous SFC migration
pattern under diverse network bandwidth limitations to select
the most appropriate bandwidth limit for reducing SFC’s
migration overhead. In that evaluation, both the downtime and
the total migration time will be analyzed and discussed. Fi-
nally, based on satisfactory bandwidth usage, a CPU consump-
tion analysis will be presented to compare all the approaches
introduced and detailed earlier in Section III.

For each SFC migration scheme, we conducted a set of
experiments evaluating both the downtime and total time
under various network configurations and CPUs’ load; each
was repeated ten times. The SFC evaluated is consisting of
a video server streamer offering videos on demand (VoD) to
clients passing through an intermediate node dubbed Dummy-
LXC node that forms our second virtualization instance to be
migrated when the SFC migration is triggered. The Dummy-
LXC, and video server nodes sizes are equal to 470 MB and
573 MB respectively.

A. Downtime Analysis

Fig. 3 depicts the induced downtime under diverse network
configurations. The main purpose of this experiment is to
optimally exploit network resources and avoid breaking down
the whole network infrastructure. The detailed explanation on

how this phenomenon can occur was introduced prior in sub-
section III-D. This experiment outputs the downtime, standard
deviation, 95% confidence interval (CI), and coefficient of
variation (CV) results for both elements constituting our
developed service chain considering various bandwidth values
as part of defining the most suitable network configuration.
Detailed values are presented in Table I. It is noticed that
we used the Asynchronous SFC migration pattern to compute
a reasonable bandwidth limit as this pattern represents the
empiric approach due to the absence of control in that SFC
migration scheme. As expected, the results for the video-
streaming container are larger when compared to the Dummy-
LXC container results for all bandwidth values. The difference
in these results is due to the additional copies of the network
connections status.

Fig. 3: Downtime comparison for the Asynchronous SFC
Migration pattern under diverse network configurations.

Meanwhile, the full Bandwidth (i.e. 3 GBps) represents the
maximum available bandwidth between two DNs (i.e. second
error bar in Fig. 3). The maximal bandwidth value was set
using the IPerf tool [17], measures were taken ten times,
and the collected values were averaged to obtain the mean
bandwidth. This case should deliver the best results in terms
of downtime and total migration time when fully exploited
by instances forming the migrated SFC. However, limiting
the bandwidth to SFC migration processes in 5G networks
will allow better exploitation of network resources in case of
a massive number of migrations. Yet, choosing the right value
is a challenging process, as a low bandwidth can increase both
the total migration time and the downtime causing damage to
the migration process. While an overestimated threshold will
waste network resources in vain. In Fig. 3, we selected three
bandwidth values for testing the downtime efficiency. The full
bandwidth usage is taken as a reference and at the same time
the overestimated value since it is the bigger value and the
one offering best results in case of lack of overhead. While
0.3 MBps (i.e. first error bar in Fig. 3) is the underestimated
value and 2 MBps value is the satisfactory value (i.e. error
bar number three in Fig. 3). It should be pointed out that the
2 MBps value was obtained by trying many bandwidth values
with one constraint in mind, which is having similar/near
results to the full bandwidth utilization. Based on Fig. 3 and
Table I, we can derive that the downtime for the Asynchronous



SFC migration pattern is quite similar for both the full
bandwidth and the 2 MBps migration bandwidth. The obtained
value represents a reduction of 99.93% from the initially
provided bandwidth without affecting downtime results. While
if selecting the 0.3 MBps value, an increase of three times the
full value will be observed.

TABLE I: Downtime comparison in case of different Band-
width values.

Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation CI 95% Coef Var
Dummy-LXC 0.3 MB 2.674 0.075 0.056 0.028
Video server 0.3 MB 4.397 0.076 0.057 0.017
Dummy-LXC 3 GB 1.189 0.049 0.037 0.041
Video server 3 GB 1.429 0.047 0.035 0.033
Dummy-LXC 2 MB 1.222 0.066 0.05 0.054
Video server 2 MB 1.571 0.056 0.042 0.036

B. Total Time Analysis

Fig. 4: Total migration time experienced for the Asynchronous
SFC Migration pattern under diverse network configurations.

To strengthen our assumptions related to limiting network
resources so that more efficient SFC migration schemes will
be admitted, we extended our evaluation to cover total migra-
tion time under different bandwidth configurations. We ad-
dressed this evaluation using the same experimental scenarios
of this section and plot the results in Fig. 4 for the Asyn-
chronous SFC migration pattern (i.e. SFC is composed by the
Dummy-LXC (red) and video-streaming (blue) containers).
In Fig. 4, the Y-axis is in seconds and for each bar, we also
plotted the 95% CI of the mean.

The mean total migration time, the Std deviation, the
95%CI, and the CV for SFCs under different network con-
figurations are presented in Table II. As expected the full
bandwidth (i.e. (3GB) second error bar in Fig. 4) and the
2 MBps (last error bar in Fig. 4) scenarios were quite similar,
while the 0.3 MBps case increased approximately four times
the total migration time than the expected value. It is important
to note that to get a comparable value between the full
bandwidth case and the 2 MBps case, we leveraged our
work [18] that optimizes the disk copy otherwise the value
of the bandwidth must be increased as more data need to be
transferred over the network.

From the results, we can also observe that for all bandwidth
configurations the video-streaming container takes longer than
the Dummy-LXC one. This additional time is logical as
initially, the video-server has a bigger size when compared to
the Dummy-LXC. Furthermore, for the video-server container,

the longer migration time in comparison with the Dummy-
LXC one is due to the greater number of memory pages
being copied. Thus, we can conclude that the overall total
migration time of the SFC will increase as the two instances
are dependent. However, other SFC migration patterns will be
considered and investigated in terms of CPU load for a better
approach in the next sub-section.

TABLE II: Total time comparison in case of different Band-
width values.

Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation CI 95% Coef Var
Dummy-LXC 0.3 MB 16.296 0.667 0.503 0.041
Video server 0.3 MB 42.658 0.742 0.56 0.017
Dummy-LXC 3 GB 11.833 1.891 1.426 0.16
Video server 3 GB 12.661 1.273 0.96 0.1
Dummy-LXC 2 MB 11.922 1.28 0.965 0.107
Video server 2 MB 13.842 0.346 0.26 0.025

C. CPU Consumption Analysis

The CPU consumption analysis experiment was conducted
to allow a better understanding of all the proposed SFC
migration patterns. Based on the two previous analysis, the
bandwidth was set to 2 MBps. Fig. 5 illustrates the varia-
tion of CPU loads following three types of SFC migration
schemes mainly Asynchronous, Synchronized (Wait-For-Me)
and Synchronized (Round-Robin) SFCs migrations. In Fig. 5,
the Y-axis represents the CPU’s load percentage in the source
DN node, and the X-axis portrays 100 seconds sample of
time in seconds where the SFC migrations occur. For the
Asynchronous SFC migration pattern, the red color is used
to represent the CPU variation during the migration process.
Meanwhile, the grey and blue colors are chosen to ex-
press Synchronized (Wait-For-Me) and Synchronized (Round-
Robin) SFCs respectively. In Fig. 5, before 20 seconds and
posterior to 75 seconds periods outline before starting the SFC
migration and after achieving the SFC migration respectively.
Meanwhile, in the range between 21 and 74 seconds, we can
observe that while the Asynchronous SFC migration pattern
has the fastest migration time (i.e. from 35s to 45 seconds,
this also can be verified leveraging the previous total time
graph in Fig. 4 and the Table. II respectively), it induces
the highest CPU load. The Synchronized (Wait-For-Me) SFC
migration pattern is the symmetrical approach as it stresses the
CPU considerably while not consuming a lot of time during
the SFC migration, showed with grey color in Fig. 5. This
pattern takes 2 to 3 supplementary seconds compared to the
Asynchronous approach. This additional time is due to the
increase in the downtime as a consequence for waiting for the
second container to reach the last iteration phase. It should be
mentioned that this time may increase more when augmenting
SFC’s components number, especially if they have different
disk sizes. Finally, the Round-Robin Synchronized approach
consumes the less CPU overhead among all other patterns. It
is quite similar to a subsequent migration scheme except the
Round-Robin policy is applied within the decomposed parts
of the migration between various components of the SFC.



Fig. 5: CPU consumption analysis in case of different SFC
migration patterns.

However, this approach takes longer compared to previous
patterns in term of total migration time.

D. Results Discussion

Based on the observations gathered from the previous sub-
sections related to the downtime, total migration time, and
CPUs’ loads we surmise that there is no clear winner in
performance. Thus, the right SFC migration pattern must be
selected based on users’ motion, applications’ requirements
and MEC nodes’ resources. Furthermore, the network-aware
SFC migration pattern is selected to act as a support for the
Synchronized (Wait-For-Me), Synchronized (Round-Robin)
and the Asynchronous SFC migration patterns considering
the delicacy of 5G networks in terms of the number of users
and available resources (network or system resources). For
instance, a combination of the Round-Robin approach and the
network-aware SFC patterns is accepted when users’ path is
known and we can proactively plan their trajectories. This will
reduce the CPU’s overhead and optimize network resource
wastage. While the Synchronized Wait-For-Me pattern could
be exploited with the network-aware SFC pattern to handle
applications that do not require ultra-low latency as the Wait-
For-Me approach doesn’t guarantee the lowest downtime.

V. CONCLUSION AND FUTURE WORK

In this work, we designed, proposed and evaluated four
SFC migration patterns for allowing the support of synchro-
nized depending applications (SFC or state-full micro-services
based applications). The obtained results showed that there is
no clear winner in our presented patterns, thus, a trade-off or
hybrid combinations are the favorite proposals. Additionally,
we have shown that the network-aware SFC pattern should act
as a support for the other proposed patterns. Our future work
will focus on employing Reinforcement Learning (RL) tech-
niques to bypass the brute force search method. Along with
extending the same RL agent to allow dynamic manageability
of the network’s bandwidth irregularity.

ACKNOWLEDGMENT

This research work is partially supported by the European
Union’s Horizon 2020 research and innovation program under
the MATILDA project with grant agreement No. 761898. It
is also partially funded by the Academy of Finland Projects
CSN and 6Genesis under grant agreement No. 311654 and
No. 318927, respectively.

REFERENCES

[1] 3GPP, “System Architecture for the 5G System; Stage
2,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 23.501, 03 2018, version 15.1.0. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3144

[2] European Telecommunications Standards Institute (ETSI), “MEC in 5G
networks,” Tech. Rep., June 2018. [Online]. Available: https://www.etsi.
org/images/files/ETSIWhitePapers/etsi wp28 mec in 5G FINAL.pdf

[3] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, May 2017.

[4] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile Edge
Computing Potential in Making Cities Smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, March 2017.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[6] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study in
Microservice Architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), Macau,
China, Nov 2016.

[7] M. Viggiato, R. Terra, H. Rocha, M. Valente, and E. Figueiredo,
“Microservices in Practice: A Survey Study,” in Conference: VI Work-
shop on Software Visualization, Evolution and Maintenance, So Carlos,
Brazil, Sep 2018.

[8] W. Li and A. Kanso, “Comparing Containers versus Virtual Machines
for Achieving High Availability,” in 2015 IEEE International Confer-
ence on Cloud Engineering, Tempe, AZ, USA, March 2015.

[9] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, September 2013.

[10] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On Enabling
5G Automotive Systems Using Follow Me Edge-Cloud Concept,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5302–5316,
June 2018.

[11] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-
vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. PP, no. 99, pp. 2–9, 2017.

[12] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards a Fast Service Migration in 5G,” in 2018 IEEE Conference on
Standards for Communications and Networking (CSCN), Paris, France,
Oct 2018.

[13] R. A. Addad, D. L. C. Dutra, T. Taleb, M. Bagaa, and H. Flinck,
“MIRA!: An SDN-Based Framework for Cross-Domain Fast Migration
of Ultra-Low Latency 5G Services,” in 2018 IEEE Global Communi-
cations Conference (GLOBECOM), Abu Dhabi, UAE, Dec 2018.

[14] G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration for
multiple correlated virtual machines in cloud-based data centers,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 279–291, March
2018.

[15] H. Liu and B. He, “Vmbuddies: Coordinating live migration of multi-
tier applications in cloud environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 4, pp. 1192–1205, April 2015.

[16] CRIU team, “Iterative migration,” 2016. [Online]. Available: https:
//criu.org/Iterative migration

[17] A. Tirumala, F. J. Qin, J. M. Dugan, J. A. Ferguson, and K. Gibbs,
“iperf: Tcp/udp bandwidth measurement tool,” 2005.

[18] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Fast Service Migration in 5G Trends and Scenarios,” IEEE Network
Magazine, Forthcoming 2019.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://criu.org/Iterative_migration
https://criu.org/Iterative_migration

