

Follow-Me Cloud: An OpenFlow-based Implementation
Tarik Taleb, Peer Hasselmeyer, and Faisal Ghias Mir

NEC Europe, Heidelberg, Germany
[tarik.taleb,peer, faisal.mir]@neclab.eu

Abstract— Services are increasingly provided by cloud com-
puting systems. Such services are often accessed while on the
move. If the distance between the user and the service is getting
large, quality-of-experience, in particular for interactive services,
deteriorates. To counter this, the provisioning location of the
service should be as close to the user as possible. This paper
describes the concept of follow-me cloud, according to which
services are migrating in unison with the user’s movements. The
key components required for such integrated user mobili-
ty/service mobility management are introduced and mappings to
an OpenFlow-based implementation are described.

I. INTRODUCTION
OBILE operators are facing the challenging task of ac-
commodating huge mobile traffic volumes, far beyond

their original network capacities. Operators are thus investi-
gating cost-effective methods for accommodating such huge
mobile network traffic with minimal investment into their
infrastructure. Most important solutions pertain to Selective IP
Traffic Offload (SIPTO) as close to the Radio Access Network
(RAN) as possible [1]. The key enabler of efficient SIPTO is to
place data gateways close to the RAN, essentially leading to a
relatively decentralized mobile network deployment [2].

Looking at the other end of the service chain, a strong trend
towards using cloud technology to provide services can be
observed. Clouds are a preferred method for service provi-
sioning as with the cloud model, creators of services do not
need to care about setting up and managing the service provi-
sioning hardware and software, but they can rather focus on
their main business of producing compelling applications and
services for their users.

Along with their great success and promising market, cloud
providers are moving towards distributed data center archi-
tectures by building increasing numbers of regional data cen-
ters [3][4]. The reasons for this trend are manifold and include
different regulatory regimes, resilience, load balancing, and
response times. The combined result is an enhanced Quality of
Experience for users by ensuring short average response times,
low error rates, and short downtimes.

Ideally, traffic offload close to the RAN and distributed
cloud data centers should go hand-in-hand. Indeed, traffic
between an application and its back-end service shall be ex-
tracted from the backhaul network at the earliest possible point
and shall be sent to the data center closest to the break-out
point. Unfortunately, the back-end service may not be neces-
sarily hosted at the data center closest to the user. Even if the
service is initially provided from the optimal data center;
“optimality” changes over time with the movements of the user
and the load situation on the data center and the network. For
operators to gain the most benefits from traffic offload without
impacting the QoE of their customers, mobile services must
migrate together with user movements, changing workloads,
and potentially other criteria.

This paper deals with how to improve quality of experience
by introducing a new user/service mobility management
scheme called “follow-me cloud”. Follow-me cloud allows

services to migrate in unison with users’ movements. Services
are therefore always provided from data center locations that
are optimal for the current locations of the users and the current
conditions of the network. As a by-product, bandwidth demand
on the back-bone of the mobile network is reduced as traffic is
kept locally as much as possible. Another advantage of the
follow-me cloud technology is that migration of services is
seamless and transparent to users. On-going sessions between
users and services are not interrupted and connections do not
need to be reestablished, even if users and/or servers (i.e.,
hosting services) change location. The paper describes the
components needed to enable the follow-me cloud capability,
in particular the detection of user movements, the decision
logic for migrating services and the method for making mi-
gration seamless. An OpenFlow-based implementation is
described. The problems that were encountered and their
solutions are detailed. A solution that achieves the objectives
of the follow-me cloud concept without the usage of any
software defined networking (SDN) technologies (e.g., Open-
Flow) is described in [19].

The remainder of this paper is structured as follows. Section
II gives an overview on some related research work. The
proposed follow-me cloud concept is described in Section III.
An OpenFlow-based implementation of the follow-me cloud
concept is described and evaluated in Section IV. The paper
concludes in Section V.

II. RELATED WORK
Movement of services in the form of code, data, state, and

virtual machines is a well-investigated topic with a large body
of research work. This paper does not propose new migration
technologies; it rather builds on existing technologies in the
area of virtual machine migration.

In the context of the Evolved Packet System (EPS) [5], its
richness of accesses has led to different interesting 3GPP study
items whereby a User Equipment (UE) is allowed to have
simultaneous accesses to different networks using different
access technologies [6]. In [7], the 3GPP System Architecture
group investigated different possibilities for dynamic IP flow
mobility between 3GPP and non-3GPP accesses. The study
proposed allowing a UE, equipped with multiple network
interfaces, to establish multiple PDN connections to different
Access Point Names (APNs) via different access systems and
to selectively transfer PDN connections between the accesses
with the restriction that multiple PDN connections to the same
APN shall be kept in one access. In [8], a solution is proposed
enabling a UE to know how and when to establish a new
optimized PDN connection for launching new IP sessions to a
particular APN, without compromising the on-going (old)
PDN connections to the same APN. In [9], a solution is pro-
posed to support SIPTO. In this solution, the user plane of a
mobile network is assumed to be decentralized and the objec-
tive is to enable a per-flow offload of certain IP traffic as near
to the edge of the operator network as possible. This is

M

2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing

978-0-7695-5046-6/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenCom-iThings-CPSCom.2013.59

240

achieved with the involvement of the mobile network’s Do-
main Name Server (DNS) that informs a UE of the gateway to
connect to for establishing a particular flow and that is upon
making a DNS resolution request. Most of these flow mobility
and session mobility mechanisms work under the assumption
that IP addresses of users do not change when the session is
active, or do change but when the UEs are in idle mode so users
will not notice any service disruption.

Generally speaking, migration of an IP service, due to
movement of the receiving user followed by change in his IP
address, would result in the breakdown of the session and the
need to reestablish a new one. This is intuitively due to the fact
that IP addresses are in practice used for identifying both an
endpoint and a network location. This overloading causes
sessions to break when the location changes, but sessions
continue. Session identifiers should therefore be separated
from location identifiers. Methods for such separation have
been devised before. DNS realizes such a separation, but it was
not designed to provide constant updates of current location. It
is rather used only once at session establishment time. The
Locator/Identifier Separation Protocol (LISP) [10] makes such
separation explicit, but does not natively support endpoint
mobility. Serval [11] caters for user and service mobility and
provides identifier/location separation by introducing an addi-
tional layer in the networking stack. It makes use of service
identifiers which require changes to applications using the
system. To avoid the breakdown of an IP session between two
peers when the IP address of any of the two peers changes
during the course of a session, Network Address Translation
(NAT) can be also used. In the context of mobile networks, the
support of NATing would require changes to nodes of the
mobile network operator and also many operators are not in
favor of NAT mainly with the foreseen expansion of IPv6.

In the Host Identity Protocol (HIP) [12], "Host" and "Loca-
tion" identifications are separated. The location is bound to an
IP address which can be changing. In short, IP address is used
for routing packets to current location. However, the host
identification is created by public/private key infrastructure
and HIP associations should be maintained by end-points. The
HIP associations are used for preserving transport connections
upon movement. That is done by a special HIP control message
"HIP re-address". Further, it may also involve a server where
end-points can update their location information that can later
be retrieved by clients. In comparison to HIP, the present work
identifies an IP session with the help of OpenFlow rules, whose
scalability represents the main challenge. Indeed, there are
various dimensions for scalability, including the number of
flows, the flow set-up rate, number of packets and the band-
width of the control channel. Some ideas have been proposed
to deal with this issue. DevoFlow [13] reduces the number of
control packets by moving some of the flow creation work
from controllers to switches. In [14], the scalability of Open-
Flow rules in a follow-me cloud scenario is assessed and an
approach to distribute control plane functions is proposed to
enhance the system scalability. In [19], the authors describe
how the objectives of the follow-me cloud concept can be

achieved with no usage of any SDN technologies, conse-
quently avoiding any associated scalability issue. Changes to
3GPP standards, including those relevant to the nodes and
interfaces of the EPS architecture or the underlying protocols,
are also avoided.

Regarding the placement of services depending on user lo-
cation, a plethora of research work has been conducted in the
recent literature. In particular, the demonstrator described in
[15] shows how services can be placed according to infor-
mation retrieved from an ALTO (Application-Layer Traffic
Optimization) network server. This work can be used to find
optimal service locations, but it is orthogonal to the migration
hiding mechanism described herein.

III. FOLLOW-ME CLOUD CONCEPT
The basic idea behind the follow-me cloud concept is that

services, provided by a cloud, are following users throughout
their journey. As soon as a user moves and thereby changes his
attachment point to the network, the optimal data center for
providing the services being received by the user is determined.
If the optimal data center is different from the currently used
one, a decision is made for or against moving the service to the
optimal location. As a result, the services follow the user
throughout his movements. The follow-me cloud concept can
be realized by different technologies. These technologies
depend on the envisioned scenario and the underlying envi-
ronment.

In order to realize the follow-me cloud concept, a number of
functions need to be realized. From the description above, the
main functions can be derived directly: i) detection of user
movements, ii) selection of optimal service location, and iii)
service migration. All three functions need to be present,
independently of the underlying technologies.

A. Movement Detection
Detection of movement is used as a trigger for the following

steps in the follow-me process. Most technologies have some
inherent means of detecting changes of location. This is due to
the fact that a (large enough) change in location is followed by
a change in the network attachment point. Such change can be
detected either directly or indirectly. A direct observation can
be done by looking at the network attachment point. Indirect
movement detection can be done by looking at the identifier
used by the user equipment (UE) for transmitting data (e.g., IP
address). As such identifiers are usually location dependent, a
change of this identifier commonly signifies a change in loca-
tion.

B. Location Selection
As soon as movement of the user has been detected, the opti-
mal service provisioning location has to be calculated. In
general, we assume the existence of a number of data centers
that can provide the service a user is currently accessing.
Among those data centers, the “best” one needs to be selected;
and that is in terms of network-related parameters (e.g., latency
and available bandwidth), parameters affecting Quality of
Service (QoS) such as server utilization and server throughput,

241

and business-related parameters (e.g., network/server/storage
costs, bulk discounts, and preferred providers). If the optimal
location is deemed the same as the current location of service
provisioning, nothing further needs to be done. In case the
determined optimal location differs from the current location,
service migration needs to be considered. To decide whether
migration is appropriate or not, the costs of shifting the service
from its current location to the new, optimal location need to be
taken into account. The costs primarily consist of bandwidth
costs needed for transferring the service. Many services consist
of multiple cooperating pieces. For example, a remote desktop
application may consist of the running operating system (OS),
the OS image, and the user’s stored data. All three parts can be
located in different places. When migrating the desktop ap-
plication, all three parts might be transferred to the destination.
Alternatively, only parts of the application might be moved, for
example, only the running OS and its image, while the user’s
data stays at its original location. Therefore, in the case of
distributed services, a decision on which parts of the applica-
tion to move needs to be made. Also, there might be different
optimal locations for different parts of the application, e.g. data
centers with cheap, large storage for data; and those with
strong processing capabilities for calculations.

C. Service Migration
Once it has been decided to change the location of service

provisioning to a different data center, the service (or parts of
it) needs to be moved. Service movement in clouds is possible
in multiple ways. A number of basic approaches can be dis-
tinguished, depending on whether a software-as-a-service
(SaaS), platform-as-a-service (PaaS), or infrastruc-
ture-as-a-service (IaaS) model is used for providing a particu-
lar service. Services provided by a SaaS system can be moved
to a different fulfillment place by sending the state and asso-
ciated data to the destination location. As the software
providing the services is available in all SaaS fulfillment
locations, it is enough to only make service state and data
available to the software at the destination location. To migrate
services provided on top of a PaaS system, service state and
data need to be transferred just as in the SaaS case. But as the
cloud provider only provides the platform, not the service code
itself, the code realizing the service needs to be transferred to
the destination data center as well. In an IaaS environment,
services are provided by virtual machines (VMs). A VM
encapsulates code, data, and state of the service it provides. For
service migration, the virtual machine with all three constitu-
ents needs to be migrated. Common hypervisors support such
migration, usually in both a cold migration mode (with the
service being unavailable during migration) and a live migra-
tion mode (with service access being possible while the VM is
moving). Migration is similar to services on top of PaaS sys-
tems, but the complete OS and supporting platform need to be
shipped to the destination as part of the migrating VM.

Although service migration is possible in all three models, it
suffers from the same problem in all three cases: different data
centers own different ranges of IP addresses. As soon as a
service moves to a different data center, it also changes its IP

address. As a result, all connections to its clients break down
and need to be reestablished. Service provisioning is therefore
not seamless when service migration happens. The remainder
of this paper describes how service migration can be enabled
without disrupting the service due to changes in the IP ad-
dresses of end-users.

IV. OPENFLOW-BASED IMPLEMENTATION
The Follow-Me Cloud concept and the functions described

in the previous section can be realized with different technol-
ogies. They can be also realized with no usage of any SDN
technologies [19]. In order to show the breadth of possible
technologies and the particular problems that arise in those
domains, an OpenFlow-based implementation is described
hereunder. For a Markov chain-based analytical model of the
FMC concept, the interested reader is referred to [20].

A. Experimental Setup

Fig. 1. OpenFlow-based follow-me cloud setup.

Fig. 1 shows the overall experimental setup which consists of
data centers hosting VMs, client network based on WLANs,
routers and a NOX based follow-me cloud (FMC) controller
that are all connected to ports of an NEC IP-8800 OpenFlow
switch. For the sake of simplicity, each datacenter in the cloud
is modeled by a VMWare ESXi hypervisor. Each ESXi host is
equipped with two 1Gbps network cards for forwarding the
management and OpenFlow traffic over the network. A virtual
network topology is defined inside the ESXi host by two
vSwitches (soft-switch) where each physical NIC is connected
with each soft-switch instance. The ESXi host manages the
VM resources that run the standard Windows XP OS. Further,
each VM is configured with two virtual NICs (vNIC) that are
connected with the virtual network through the soft-switches.
One vNIC carries the management traffic [16] and the other
NIC carries the OpenFlow traffic. The storage space is shared
between the two datacenters and is accessed by the standard
iSCSI protocol. The datacenters are remotely managed by the
VMWare vCenter software. Further, the client network con-
sists of two WLANs. Given the client and data center networks,
a router entity is used for correctly forwarding traffic among
different network segments. For the sake of simplicity, the
router acts as the first hop for traffic originating from client and
data center networks. Further, the Linux router runs DHCP
servers and Linux Traffic Control (TC) for controlling the path

242

characteristics (e.g., delay and congestion) between the two
network segments. From the physical OpenFlow switch per-
spectives, four virtual switches (VLAN) are used for separately
carrying the traffic of the two data centers and the client net-
work. The FMC controller manages the forwarding behavior
on the four VLAN’s and also monitors the path characteristics
between a data center and the client network and that is for
resource management optimizations. For live VM migration,
the VMotion® [17] cloud infrastructure technology from
VMware is used. VMotion® traffic is mapped on the man-
agement network whereas all active communication between
the VM and remote users are managed by the OpenFlow
network.

B. The OpenFlow based NOX Controller
Fig. 2 shows the architecture of the OpenFlow-based FMC
controller that has been developed in NOX. For validating the
FMC concept, the controller entity is assumed to be aware of i)
the virtual switch instances and their data path identifiers on
the physical OpenFlow switch, ii) the VM identifiers [18]
(namely the IP and MAC addresses), iii) the location and IP
addresses of each default gateway in the test bed, iv) the
OpenFlow switch ports identifiers at which the data center,
router and client networks are connected, v) the IP address
ranges managed by each DHCP server both for client and
datacenter networks, and vi) the locations of distributed data
centers that can either be part of the operator network or could
be autonomous domains. In addition to a database, the Open-
Flow-based FMC controller consists of seven components,
each playing a particular role described hereunder.

Fig. 2. The FMC controller architecture.

1) Location Manager
For correctly installing forwarding rules into the OpenFlow
switch, each client and VM is linked to a home location. This is
based on the IP address allocation and gateway settings con-
figured in the VM. The configuration settings may be changed
by the administrator during the service time and the database is
accordingly updated. Such configuration also holds for clients
in the client network. Given the home location is known to the
controller, if any traffic from a particular client or VM appears
on a different network than its home location, the Location
Manager updates the status for that entity to be in a Visited
Network/Location. Hence, the Location Manager keeps always
track of current location of clients and VMs in home and
visited networks.

2) Location Mapper
Given the home and visited locations of both client and VMs
are known to the FMC controller, the Location Mapper module
optimizes the path characteristics by selecting the appropriate

data center location for the VM. Such control logic can be
mapped on the geographical location of the data centers, path
characteristics metrics based on average delay, load or even
congestion situations between the client and datacenter net-
works. For evaluation, proprietary API for vCenter® is used at
the controller for triggering VM migration across datacenters.

3) Mobility Detector
The actual VM migration is carried out by the cloud infra-
structure software. For proof of concept, VMotion® technol-
ogy is employed. However, orthogonal to the underlying
technology, the FMC controller shall be able to detect when a
VM has been actually moved to a new location. For evaluation,
the Mobility Detector function keeps track of the flow entries
installed in each OpenFlow virtual switch instance pertaining
to home and visited locations. The OpenFlow rules for home
locations are pro-actively installed in the switch. However for
visited network, no such rule is installed. When traffic for a
newly migrated VM hits the OpenFlow switch of a visited
network, it must result into no match for that flow table in the
switch. Afterwards, the packet should be forwarded to the
controller which compares the location information with
IP/MAC addresses to ascertain that VM has been indeed
moved to the visited network.

4) ARP Packet Processing
VMs and clients are configured with default gateway settings.
Initially, ARP (Address Resolution Protocol) caches are as-
sumed to be empty at both endpoints and the router involved in
the setup. There is no ARP specific forwarding rule installed in
any of the virtual switches. Instead, each ARP packet, both
request and response types, is explicitly forwarded to the FMC
controller. As depicted in Fig. 3, upon reception of an ARP
request from a virtual machine, the controller answers with an
appropriate response. The response is constructed using the
controller’s knowledge of the layer-2 information of the at-
tached end-points, including the gateway. The controller uses
the PACKET_OUT OpenFlow command instructing the
switch to send the ARP reply on the switch instance/port on
which the original request was received. The necessary state
(i.e., data path identifier, input port, source MAC and IP ad-
dress) for constructing the reply message is taken from the
original ARP request packet that has been forwarded to the
controller. On the end-host, once the ARP reply arrives, the
ARP cache is updated. In contrast, the ARP cache at the router
is still stale because the controller replied on behalf of the
router. Subsequently, when an IP packet arrives at the router
for that particular end point, it also generates an ARP request
which is again forwarded to the controller. In the current setup,
the controller simply forwards all ARP requests from the router
to the end points on the same subnet. However, it would also be
possible to let the controller reply to these requests as in the
previous case for a similar effect.

5) Packet Manipulator
Given a VM can either move from the home network to a
visited network and vice versa, a key functional requirement
from the controller perspectives is to preserve all ongoing user
sessions while the VM is migrated. This implies that no con-

243

figuration change (e.g., IP address and gateway configurations)
is allowed on the VM. Further, the IP address ranges managed
by datacenters can be overlapping and the first hop setting may
not be consistent across subnet boundaries. Hence, a Packet
Manipulator module is introduced at the controller for creating
a “virtual tunnel” within the visited network segment. The
“virtual tunnel” operates by re-writing the IP address field
within the packet IP header for each outgoing packet from the
VM to outer network. The original IP header is restored for the
packet when the last hop in the visited network segment is
reached. The same technique is applied for all the incoming
traffic to the VM. This is achieved by modifying the set of
OpenFlow rules installed in the visited network.

Fig. 3. Handling of ARP packets by FMC Controller.

6) DHCP Handling
The client network consists of two WLANs and the IP address
ranges are managed by two DHCP (Dynamic Host Configura-
tion Protocol) servers. The client location is dynamic and
beyond operator control. However, based on client’s location,
the optimal location of VM can be decided. Therefore, a DHCP
server is also implemented in the NOX controller and specific
rules are installed in the switch such that all DHCP traffic
should traverse the controller entity. The amount of DHCP
traffic is small. DHCP overhead is therefore deemed to be
negligible. Fig. 4 portrays the flow of messages exchanged
among client, FMC controller and DHCP server till a connec-
tion is established/restored between the client and an adequate
data center, based on their locations. Of particular interest, Step
10 in the figure shows that the client machine successfully
acquired a new IP address and based on the current client
location the decision for VM migration can be made.

C. System Execution and Performance Evaluation
In the remainder of this section, we evaluate the performance
of the follow-me cloud setup, as depicted in Fig. 1. Further
results based on an analytical model of FMC are available in
[20]. In this setup, we configure the queue parameters for each
virtual interface using the Linux Traffic Control modules on
the Linux machine. Without any purposes in mind, the com-
munication delays between a client network and its optimal
data center and between a client network and its “sub-optimal”
data center are set to 1ms and 50ms, respectively. Fig. 4 shows
the ping latency between the client and its corresponding VM
hosted in the data center and that is considering two scenarios,
namely when follow-me cloud is used to enable VM migration

and when it is not used. When the follow-me cloud is not used,
the ping latency remains equal to 50ms. The initial 150ms high
latency is mainly attributable to OpenFlow rules when the new
traffic arrives at the controller. In contrast, when the follow-me
cloud is used, the ping latency drops to 1ms and that is around
32 s after the start of the experiment. This is mainly due to the
fact that the VM was dynamically shifted to the optimal data
center following the movement of the client. It shall be noted
that during the VM migration, few ping losses were noticed.

Fig. 4. Intercepting DHCP Packets for Location Mapper.

Fig. 5. Client ping latency with and without FMC.

One major use case of follow-me cloud is its implementation in
mobile networks. As such networks have traditionally large
user bases, scalability of follow me cloud up to many millions
of users is a must. The introduced follow-me cloud imple-
mentation uses OpenFlow to enable movement of services
following that of users. As every moving end-point needs
certain OpenFlow rules to map between identifier and locator
of the end-point, the size of the rule set depends on the number
of moving end-points. With millions of users and services, the
rule set is beyond the capabilities of current OpenFlow-enabled
switches. But the build-up of networks from multiple switches
inherently provides a distribution of end-points to switches and
therefore a distribution of OpenFlow rules. The set of rules
pertaining to a particular switch is therefore a fraction of the
overall rule set. Our analysis shows that the number of rules
per switch is within the limits of currently available hardware
[14]. Together with the OpenFlow rules on individual switch-
es, the management of the rules at the follow-me cloud con-

244

troller is an issue for scalability, as the controller has to manage
the rules of multiple switches. For large networks, it is essential
to realize a distributed controller in order to deal with the large
size of the rule set. Distribution can happen across two di-
mensions, namely network scope and controller role. The
network scope refers to assigning certain parts of a network to
a particular controller. By narrowing the scope of the assigned
network slice, the number of rules managed by a single con-
troller shrinks. In addition, the follow-me cloud system dis-
tinguishes three different roles for a controller: home, foreign,
and correspondent. Different sets of rules and knowledge are
required for the different roles. By separating these three roles,
a separate controller can be assigned to each of these roles even
further reducing the number of rules managed by a single
controller. A more detailed assessment of the scalability of our
follow-me cloud controller can be found in [14], opening up
new challenges for the community of OpenFlow researchers.

V. CONCLUSIONS AND FUTURE WORK
Cloud computing and mobility have been two major trends

of the last few years and are expected to grow in importance
over the coming years. Together they will be an important part
of the future computing and communications infrastructure.
The follow-me cloud concept introduced in this paper com-
bines the two trends and shows how they can interact and bring
benefits to mobile users by allowing service access from data
centers optimal to the current location of users. The article
showed the feasibility and viability of the follow-me cloud,
describing an OpenFlow-based implementation. The described
architecture shows how mobility management systems from
different domains such as wireless networks and server virtu-
alization can work together to realize new capabilities that are
not possible when looking at just a single domain.

Service composition has been a topic of discourse in the
computing domain for quite some time and we expect the
federation of management systems spanning multiple func-
tional and/or administrative domains to become increasingly
important for providing new and improved services in an
automated fashion. This paper showed how such a federation
between functional (network and compute) domains as well as
administrative (different operators of data centers and network
segments) domains could join efforts to provide high quality
mobile services.

The paper outlines a possible implementation of the fol-
low-me concept that is based on VMware cloud infrastructure
technology. A possible extension to this work is to enable such
functionality in an open source cloud IaaS platform such as
Openstack that supports defacto-standard networking1 API’s
for manipulating the tenant based virtualized networks. Given
that VM’s could be deployed across distributed data centers,
another possible direction are to explore inter data center
connectivity for managing resources across the data centers
under an umbrella of a single logical controller entity. Simi-
larly, for live VM migration the VM management traffic
should be tunneled from the source to destination data centers
either through shared storage or exploiting live block migra-

1 Neutron: wiki.openstack.org/wiki/Neutron

tion. For the user plane traffic, OpenFlow controllers in both
domains should co-ordinate for managing the ongoing session
on behalf of the migrated VM. Finally, this functionality
should be exposed to higher layer applications in the form of
specific API’s for VM placement and migration along with
user location in the network.

ACKNOWLEDGMENT
The research work presented in this paper is conducted as

part of the Mobile Cloud Networking project, funded from the
European Union Seventh Framework Program under grant
agreement n°[318109].

REFERENCES
[1] K. Samdanis, T. Taleb, and S. Schmid, "Traffic Offload Enhancements

for eUTRAN", in IEEE Communications Surveys & Tutorials journal,
Vol. 11, No. 3, Aug. 2012, pp. 884-896.

[2] T. Taleb, K. Samdanis, and F. Filali, “Towards Supporting Highly
Mobile Nodes in Decentralized Mobile Operator Networks,” in Proc.
IEEE ICC 2012, Ottawa, Canada, Jun. 2012.

[3] R. Miller, “AOL Gets Small with Outdoor Micro Data Centers,” Data
Center Knowledge, Jul. 2012.

[4] R. Miller, “Solar-Powered Micro Data Center at Rutgers,” Data Center
Knowledge, May 2012.

[5] 3rd Generation Partnership Project, “General Packet Radio Service
(GPRS) enhancements for Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) access,” TS 23.401 (work in progress).

[6] 3rd Generation Partnership Project, “Multi Access PDN connectivity and
IP flow mobility,” 3GPP TR 23.861 V1.3.0, Feb. 2010.

[7] 3rd Generation Partnership Project, “IP flow mobility and seamless
Wireless Local Area Network (WLAN) offload; Stage 2,” 3GPP TS
23.261, Jun. 2010.

[8] T. Taleb, Y. Hadjadj-Aoul, and S. Schmid, "Geographical Location and
Load based Gateway Selection for Optimal Traffic Offload in Mobile
Networks," in Proc. IFIP Networking, Valencia, Spain, May 2011.

[9] T. Taleb, K. Samdanis, and S. Schmid, "DNS-based Solution for Oper-
ator Control of Selected IP Traffic Offload," in Proc. IEEE ICC, Kyoto,
Japan, Jun. 2011.

[10] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID separation
protocol (LISP),” Internet-Draft draft-ietf-lisp-13.txt, IETF Secretariat,
June 2011.

[11] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J.
Rexford, and M. J. Freedman, “Serval: An End-Host Stack for Ser-
vice-Centric Networking,” 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’12).

[12] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Archi-
tecture,” RFC 4423, May 2006, URL: http://www.ietf.org/rfc/rfc4423.txt

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: Scaling Flow Management for
High-Performance Networks,” ACM SIGCOMM 2011, Toronto, Can-
ada, August 2011.

[14] R. Bifulco, M. Brunner, R. Canonico, P. Hasselmeyer, and F. Mir,
“Scalability of a Mobile Cloud Management System,” Workshop on
Mobile Cloud Computing, SIGCOM 2012, Helsinki, Finland, Apr. 2012.

[15] M. Steiner, B. Gaglianello, V. Gurbani, V. Hilt, W. D. Roome, M.
Scharf, and T. Voith, “Network-Aware Service Placement in a Distrib-
uted Cloud Environment,” ACM SIGCOMM 2012, Helsinki, Finland,
August 2012.

[16] The Architecture of VMWare ESXi (White Paper).
www.vmware.com/files/pdf/ESXi_architecture.pdf

[17] VMware VMotion: Live Migration for Virtual Machines Without
Service Interruption.
www.vmware.com/files/pdf/VMware-VMotion-DS-EN.pdf

[18] Virtual Machine Identifier – UUID.
www.vmware.com/support/ws5/doc/ws_move_uuid.html

[19] T. Taleb and A. Ksentini, “Follow Me Cloud: Interworking Federated
Clouds & Distributed Mobile Networks”, to appear in IEEE Network
Magazine, Sep. 2013.

[20] T. Taleb and A. Ksentini, “An Analytical Model for Follow Me Cloud,”
in Proc. IEEE Globecom 2013, Atlanta, USA, Dec. 2013.

245

