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Abstract – To enhance video streaming experience for mo-

bile users, we propose an approach towards Quali-

ty-of-Experience (QoE) aware on-the-fly transcoding. The 

proposed approach relies on the concept of Mobile Edge 

Computing (MEC) as a key enabler in enhancing service 

quality. Our scheme involves an autonomic creation of a 

transcoding service as a Virtual Network Function (VNF) 

and ensures dynamic rate switching of the streamed video 

to maintain the desirable quality. This edge-assistive 

transcoding and adaptive streaming results in reduced 

computational loads and reduced core network traffic. The 

proposed solution represents a complete miniature content 

delivery network infrastructure on the edge, ensuring re-

duced latency and better quality of experience.  

I. INTRODUCTION 

The telecom world has experienced a rapid development in 

the mobile communication technology over the last few years. 

With high-end devices (e.g., smartphones and tablets) and new 

interactive mobile applications in place, mobile data usage is on 

the rise. Services such as video, music, and social networking 

are gaining momentum. According to the Cisco Visual Net-

working Index [1], it is estimated that by 2020, 75% of the 

global mobile data traffic will be occupied by video streaming 

services. In the recent years, user demand has also shifted from 

traditional broadcasted video to dynamic on-demand live 

streaming and to mobile video viewing. As these services are 

becoming an integral part of the mobile users’ entertainment 

and social life, user expectations towards high Quality of Ex-

perience (QoE) are also increasing. The soaring demands for 

video services with guaranteed quality are now becoming 

challenging for the service providers. High data rate connectiv-

ity to ever-growing data volumes and provisioning a reliable 

and scalable network to ensure better Quality-of-Service (QoS) 

are now the prime focus of content providers as well as of 

mobile network operators. 

Traditional video streaming was designed considering a sta-

ble Internet link and a limited type of end-user devices. But with 

the typical link bandwidth variations in the present mobile 

networks, along with an increase in diverse types of end-user 

devices, the traditional technology has started to fall behind. 

This resulted in poor video viewing experience due to its 

non-scalable and maladaptive nature.  

At the media encoding level, to address the scalability sup-

port for a diverse range of devices, the Scalable Video Coding 

(SVC) mechanism [2] is introduced. Media profiles with mul-

tiple subsets (e.g., comprising various formats, screen resolu-

tions, and frame rates) are stacked as layers in a single media 

file. The base layer is necessary to decode the video with 

minimum quality, while enhancement layers add spatial and 

temporal information to increase the delivered video quality. 

SVC can be combined with adaptive bitrate streaming tech-

niques (i.e., MPEG DASH and Apple HLS) to adapt to varying 

network bandwidth. Media files are segmented in chunks, and a 

manifest file with information of the available profiles/video 

representations is made available to the end users. The latter can 

then decide on the desired representation to retrieve media, 

based on the profiles the end-user device supports. It can then 

dynamically switch among the available video bitrates (i.e., 

qualities) to better cope with network dynamics, aiming to 

achieve continuous playout. For example, a client can monitor 

the download time of chunks and if the required download time 

fails to meet the desired time, the client device can automati-

cally switch to a lower profile. Maintaining a huge number of 

profiles remains a storage challenge for adaptive video delivery 

systems, and SVC technologies can assist to this end. 

Numerous advances have recently also taken place in the 

content delivery infrastructure front. In a present day scenario, 

thousands of video content items are uploaded daily to the 

content provider’s network. This content is stored in large 

volumes in the provider’s centralized content database, and is 

then transcoded from source format to final delivery format. 

After this computationally intensive transcoding process, the 

prepared content is then transferred to multiple streaming 

servers (residing at the edge of the content provider’s network) 

for further delivery to the users. To this extent, cloud computing 

has played a key role. The on-demand provisioning and au-

to-scaling features of the cloud supply service providers with 

scalable resources, such as huge computing power and storage, 

and facilitate service and infrastructure management.  

Unlike some typical enterprise cloud applications, video 

services are highly time-sensitive. Therefore, apart from storage 

and transcoding functionality, they also require the delivery of 

content in real-time. But with the present 4G and cloud infra-

structure support, users still experience buffering delays and 

intermittent playback interruptions. This is mainly due to the 

congestion that appears more often in the core network, which 

leads to higher end-to-end latency and jitter. Thus, extending 

cloud-based services to mobile environments requires a few 

more factors to be considered for quality enhancement, such as 

wireless link dynamics, user mobility, latency, and core net-

work traffic. 

The next generation of mobile systems, commercially known 

as 5G, aims at addressing these issues. Relying on technologies 

such as Network Function Virtualization (NFV), Software 

Defined Networking (SDN), and Mobile Edge Computing 

(MEC), 5G promises to attain system flexibility, elasticity and 

agility. The reformation of the cloud hierarchy towards a de-

centralized architecture and pushing computing resources close 



 

to mobile users (i.e., at the mobile network edge) is expected to 

provide effective solutions to these limitations. The concept 

behind MEC is to provide storage and computation resources 

from the network edge, in the proximity of users. Accordingly, 

pushing data processing from remote cloud locations to the edge 

and processing data “locally” can reduce traffic bottlenecks in 

the core network. Besides, it can help in offloading important 

computational load from power-constrained user equipment to 

the edge while ensuring short end-to-end latency. 

There are high expectations on how MEC can empower video 

streaming services. In this paper, we do not go deep in opti-

mizing transcoding techniques but, rather, we focus on using 

transcoding as an enabling service at the mobile edge to enhance 

video quality. This paper proposes a scheme to achieve fine 

granularity in bitrate selection for adaptive streaming based on 

real-time perceived video quality monitoring, using QoE esti-

mation techniques. Degradation in perceived quality triggers an 

on-the-fly transcoding (OTFT) service at the mobile edge to 

vary the bitrate of the stream, a process which continues until 

optimal quality is achieved. Our objective is to demonstrate how 

the QoE of a video service can be maintained by enforcing 

transcoding as a requirement-based Virtual Network Function 

(VNF). Additionally, our scheme reflects the reduction in 

queuing delay in transcoding and performing quality assisted 

video streaming.  

The remainder of this paper is organized as follows. Section 

II presents some related work. Section III describes our pro-

posed OTFT framework, along with its supporting mechanisms. 

For the sake of performance evaluation, Section IV portrays our 

experimental setup and discusses the obtained results. We 

conclude the paper by summarizing our main findings in Sec-

tion V. 

II. RELATED WORK 

MEC has been proposed as an enabler for novel, low-latency 

services in a mobile network. Considering its potential, both 

industry and the research community are working on maxim-

izing the benefit and efficiency of the MEC technology. As 

discussed in [3], [4], such decentralized architecture with sup-

port for fault resiliency will enable new services and promising 

business models. Importantly, MEC has been considered to be 

the key player in mobile video applications. 

In the context of video streaming, the proposed two-hop edge 

architecture in [5] reflects the data transfer rate and throughput 

of the edge in comparison with the remote cloud. The research 

work in [6] introduces a network-assisted adaptive streaming 

application to enhance QoE of the delivered multimedia content. 

An architecture with distributed parallel edges to increase QoE 

for content delivery has been proposed by Zhu et al. in [7]. 

Chang et al. [4] deploy independent small-scale datacenters at 

the network edges, which are capable of performing video 

caching and streaming on their own. Jararweh et al. [8] integrate 

caching with proxy functionality at the edge to store media 

content. They also enforce computation offloading to increase 

the lifetime of mobile devices.  

Video transcoding in the cloud has recently received signif-

icant research attention. Utilizing virtual instances of the cloud 

to perform video transcoding upon request has been proposed in 

[9], [10] as the most simple and straightforward use case. The 

work in [11] and [12] propose cloud-assisted video transcoding. 

Utilization of cloud resources to assist mobile devices for cus-

tomized transcoding services [13] and for energy conservation 

on mobile devices [14] has also been proposed. As an efficient 

way of video transcoding in the cloud, an approach to reduce the 

bitrate of the transcoded video by using a higher quantization 

parameter without reducing the frame size or the frame rate has 

been proposed in [15]. Transcoding only portion of a video to 

reduce the transcoding time [16], [17] and distributed video 

transcoding in the cloud to enhance efficiency have also been 

studied in [18], [19]. Amazon in its recent development [20] has 

introduced an elastic transcoder to reduce time of the intensive 

transcoding service.  

In all the above research works, MEC is deemed to be a 

promising solution for handling video services, although mainly 

focusing on streaming, caching and compression techniques; 

the computationally intensive transcoding functionality has 

been generally proposed to be treated on the cloud-based infra-

structure. Energy-efficient video transcoding as a network 

function at the edge has been proposed in [21] for a Voice over 

Long Term Evolution (VoLTE) service.  

In our prior work [22], we focused on the effects of pro-

cessing load on user experience, and proposed a QoE-driven 

mechanism for elastic compute resource allocation in a 

cloud-native 5G environment. In this work, we address issues 

that pertain to network-related resources and effects. To the best 

of the authors’ knowledge, QoE-aware on-the-fly transcoding 

along-with bitrate variation in adaptive streaming at the mobile 

edge for content delivery has not been yet considered. In this 

paper, we describe and showcase an innovative transcoding and 

streaming scenario leveraging the potential of MEC. 

III. PROPOSED OTFT SCHEME  

A. Use cases 

In a real-life scenario, many use cases can be considered in-

volving video streaming from the edge. We here consider two 

use cases where fine-grained on-the-fly transcoding will en-

hance users’ video experience: 

 Use case 1: Bob and Alice are two friends residing in the 

same city in the vicinity of the same mobile edge node. 

Bob has one high-end smart phone capable of taking High 

Definition (HD) videos whereas Alice’s device supports 

only Standard Definition (SD) quality. We consider a 

situation where Bob takes a HD video of some funny 

moments and wants to immediately share it with Alice. He 

uploads the video to the nearest edge tagging Alice. Alice, 

upon receiving the notification, clicks to play the video. 

Due to unsupported resolution, Alice will experience 

buffering when playing the content. The edge, being 

smarter in this case, will make use of its on-the-fly 

transcoding capabilities to convert the high-bitrate source 

format to a lower bitrate one. This will help Alice to view 

the video more smoothly. The relevant operations, in-

cluding uploading, transcoding, and streaming, will take 



 

place in the edge without involving the content provider’s 

backend cloud network. 

 Use case 2: Bob is waiting for his next transit flight in a 

busy airport and wants to watch some music video for 

leisure. He connects to the nearby edge and starts receiv-

ing the video stream. The edge server has adaptive 

streaming enabled with contents of only HD quality. 

However, due to limited network bandwidth and the un-

availability of other low-bitrate profiles of the media 

content, Bob will experience buffering delays and, thus, 

reduced QoE. In such a situation, the edge will spin up the 

transcoding service to create media content with a lower 

bitrate than HD. Upon completion, the newly prepared 

content will be streamed. Bob’s QoE will be monitored, 

and this process of fine tuning will continue in a recurring 

manner, until a smooth viewing experience is achieved. 

This will both balance user experience and improve net-

work resource utilization and, thus, network availability. 

In this paper, we consider a lightweight, container-based 

transcoding service to meet the requirements of the aforemen-

tioned use cases, with more focus on fine bitrate granularity and 

the on-the-fly transcoding aspect of Use case 2. 

B. Proposed OTFT Architecture 

The proposed OTFT architecture, represented in Fig. 1, is 

based on a two-tier principle. The content provider’s 

cloud-based network consists of a centralized content database 

(CCD), a transcoder, and a segmenter. The cloud has its own 

orchestrator to manage its infrastructure and resources. The 

uploaded content from the content producers are initially stored 

in the CCD. The content is then sent to the transcoder to perform 

H.264/AVC transcoding. Note that the use of SVC technologies 

is an option that can offer storage advantages, since all available 

video representations can be stored in a single file. However, 

our design considers H.264/AVC encoding, which is also more 

widely supported. The prepared content is finally segmented in 

chunks and is prepared for adaptive streaming by the segmenter. 

Streaming-ready contents are then transferred to the streaming 

server (SS). The SS is hosted in the MNO’s edge network node 

and is responsible to further deliver the video stream to the end 

user’s device. An additional component, the cloud controller 

(CC), is considered. The CC is responsible for business-related 

functionality and maintains the Service Level Agreement (SLA) 

between the content provider and the mobile network operator 

(MNO). This deals with the content provider’s access rights 

over the MNO’s network to manage the SS. The dotted line 

between CC and the Edge Orchestrator (EO) represents 

agreement level connectivity. 

The Edge Node (EN) is hosted on virtual machines on top of 

existing hardware in the MNO’s edge network. The EN runs its 

own compute and storage services. The compute one is re-

sponsible for hosting container-based applications on the edge, 

and the storage one is used to host the container image templates. 

The EN and all its services are managed by the EO. These 

services are hosted in containers inside the edge, and the EO 

controls their deployment and management.  

 

 
Fig. 1. Proposed OTFT Architecture. 

The primary service components considered here are: 

a. Streaming Server: Part of the content provider’s net-

work, and a container-based application to perform 

adaptive streaming to the client. In this scenario, we have 

considered HTTP live streaming (HLS), so the 

pre-transcoded chunks of media segments (sent from the 

segmenter) reside inside this server. Upon a client re-

quest, the manifest file with the media description and 

structure is first served, and sequentially the chunks are 

delivered. 

b. Quality Assessor: It is responsible for assessing the 

quality of the served video using the Pseudo-Subjective 

Quality Assessment (PSQA) methodology. PSQA uses 

machine learning techniques to train a Random Neural 

Network (RNN) classifier on data from subjective tests 

with human subjects, where specific parameters that af-

fect QoE are monitored while the viewer assesses the 

quality of test video sequences in the scale from 1 (poor 

quality) to 5 excellent quality). The resulting RNN can 

then be used in real time, given that its input parameters 

are measurable. In our case, we used the PSQA tool of 

Singh et al. [23], which is trained to estimate QoE for an 

adaptive streaming service of H.264/AVC-encoded 

video. The input to this tool is the number, frequency and 

duration of playout interruptions in a 16-second video 

window, as well as the average value of the Quantization 

Parameter (QP) (the input values have to be appropri-

ately normalized; for details see [23]). Its output is an 

estimate of the Mean Opinion Score (MOS), i.e., the 

expected quality rating in the 1-5 scale that a panel of 

humans would give for a video under the specific QP and 

interruption conditions. 

The Quality Assessor receives real-time information of 

the service status from the client. The status includes the 

ID of the last downloaded segment and of the playing 

segment, the playback interruption count and duration, 

and the QP value of the video playing at the end-user 



 

device. Considering these parameters, the PSQA model 

generates a QoE estimate in real-time in an automatic 

manner and without any human intervention. It also 

performs a check on the calculated MOS value. It is 

under the QA’s scope to trigger the EO for initiating 

transcoding service. 

c. Transcoder and mixer: It is a container-based virtual 

transcoding service deployed by the EO. It is used to 

transcode the source media format to another deliverable 

format with a different bitrate. Once the newly prepared 

content is ready, the mixer replaces the old content in the 

streaming server with the new one. The triggering pro-

cess to deploy the transcoder and mixer service is as-

sisted by the EO. Once the required operation is done 

and the target QoE level is achieved, the service is ter-

minated and removed from the EN.  

Referring to Use case 2, the stepwise operational flow is de-

picted in Fig. 2. For the purpose of demonstration, let consider 

that the streaming server stores HLS content with bitrate of R1 

(high bitrate). Also, we consider here that the application used 

to view the stream can provide the information necessary for 

QoE estimation, i.e., the ability to measure playout interruption 

and QP information and the reporter functionality. The inter-

ruption logger maintains a log of occurred interruptions count 

and interruption duration of the played video segment. Simi-

larly, the QP logger tracks the QP value per picture macroblock 

of the played video. The log values are finally handed over to 

the reporter in real-time. The reporter also keeps information of 

the downloaded segment ID, playing segment ID, and playout 

start time.  

 

 
Fig. 2. Signaling diagram. 

 

To start the service, Bob connects to the edge and sends an 

HTTP GET request to the server to fetch the playlist/manifest 

file. Upon receiving the file, the end-user device starts sending 

HTTP GET requests to fetch the media segments sequentially 

one by one as detailed in the playlist/manifest. Once the initial 

necessary playout buffer level is achieved the player starts 

displaying the first segment and automatically moves on to the 

second one, as soon as the first segment is over. At the end of 

every segment, the reporter sends the whole set of information 

to the QA. The QA performs a real-time calculation of the MOS 

value at fixed intervals. If the desired value is above the optimal, 

it reports that the QoE of the video is acceptable and no further 

action is required until the next calculation time instance. On the 

other hand, if the value decreases, the QA triggers the EO to 

spin up the transcoder and mixer service. 

The container is started (using template image from the EN) 

and the transcoding of the media content is performed. The 

bitrate is reduced to R2 (R2<R1), one step lower than the cur-

rent bitrate. Once the newly-built media content is ready, the EO 

performs a check to get information on the last downloaded 

segment ID. Upon confirmation, the EO then triggers the mixer 

to replace the old segments (which are not yet fetched by the 

client) with the new ones. Once the operation is finished, the EO 

waits for the next QA information. If no information is received 

within a certain interval, the EO considers that the target MOS 

is achieved, and discards the service and stops the container. 

However, if the QoE still remains low, the same operation is 

performed again reducing the bitrate to R3 (R3<R2). This 

stepwise recurring operation continues until a target optimal 

QoE is achieved at the client end. 

 It is worth noting that the proposed solution not only ensures 

QoE, but also transforms the edge into a complete video deliv-

ery solution. Performing transcoding on-the-fly incurs com-

pute-intensive load only for a limited time. Furthermore, storage 

overhead can be reduced, as pre-transcoded multiple versions 

are not required from the beginning and can be generated 

on-demand. Moreover, by serving the content locally (i.e., from 

the edge), the solution ensures reduction in core network traffic 

and reduced end-to-end latency. 

C. Potential enhancements 

Considering a mobile network, where network conditions are 

dynamically changing due to user mobility, high sensitivity 

towards transient events may lead to a “ping pong” effect, 

where transcoding will be initiated every now and then with the 

varying conditions of the network. Instead, the triggering should 

be done only if the network conditions have actually degraded. 

However, still the tradeoff between responsiveness and avoid-

ing the ping pong effect exists. Maintaining a sliding window of 

QoE scores to decide on whether to initiate transcoding or not 

based on a running average of the MOS (within that window) 

can help address this issue. 

Various further performance enhancements are also possible. 

For example, the cross-layer mobility, bandwidth [24], and QoE 

[25] prediction mechanisms that we have studied in our prior 

work in similar contexts can be applied to this end. Such an 

ability to predict the conditions at the client end can assist in 

identifying the optimal time to initiate transcoding. 

Depending on the resource availability in the EN, the trans-

coding service can be initiated in parallel to support multiple 

end-user requests. Considering it as a compute-intensive task, 

and in case of limited resources in the serving Edge, it is the 

EO's responsibility to select another nearby edge (taking into 

account response time and resource availability) to perform the 

transcoding-only operation, leveraging the shared infrastructure 

concept of MEC. 

 The concept can be further enhanced by introducing smart 

algorithms in the selection of the steps for bitrate variation. 

Also, introducing advanced transcoding techniques may reduce 



 

the delay incurred from triggering till completion. Moreover, if 

the video is almost towards the end (i.e., the remaining video 

time is less than the transcoding time), the service initiation may 

simply be omitted. 

IV. PERFORMANCE EVALUATION  

Fig. 3 portrays the testbed environment which we have built 

to simulate the proposed edge-based transcoding and streaming 

service. The content provider’s cloud-based network is not 

simulated, as we have considered that the media content for 

adaptive streaming is ready and is already stored in the 

streaming server. The simulation environment is mostly focused 

towards assessing the performance of the edge. Our testbed is 

simulated with two laptops (with Ubuntu 14.04.3 LTS desktop 

OS), where one is the edge node and the other is the client.  

The client was simulated using a version of the VLC player 

which we modified to implement QP and interruption moni-

toring. The reporter functionality was implemented in a python 

script, which retrieves the required information, filters it, and 

passes it on to the QA database residing in the EN. 

 

 
Fig. 3. Test-bed setup. 

 

On the edge side, two VirtualBox VMs were used. VM1 was 

used as a gateway for the entire network to access the Internet. 

DHCP with authentication was also set up inside VM1 to con-

figure the whole network using a single subnet (for ease of the 

simulation). VM2 was configured using the Proxmox Virtual 

Environment to act as the EN. We use OpenVZ containers to 

host the services of our architecture in our testbed. The 

streaming server functionality was achieved using an Ubuntu 

cloud minimal image using Nginx as the webserver inside an 

Openvz container. Nginx was also configured for HLS 

streaming. The content for initial streaming was pre-transcoded 

and prepared using ffmpeg, and the video codec used was 

H.264/AVC. The same container is used as storage for the 

media files. The QA was configured to receive interruption and 

QP information periodically from the database and appropri-

ately normalize/transform them to be used as input to the PSQA 

tool to calculate the expected MOS values. The same QA script 

was responsible for the evaluation of the MOS values and 

triggering the EO. The automated orchestration was performed 

with a script serving the functionality of EO for spinning up the 

container which provides the transcoding service. The trans-

coding container template was built with an Ubuntu minimal 

image and had ffmpeg installed.  This service was configured to 

start on boot. The mixer functionality was created with a script 

residing inside the same container. Finally, to ensure that the 

laptop acted as an edge access point, its wireless LAN interface 

was configured using hostapd in IEEE.802.11 master mode. 

Also, Netem and Wondershaper tools were used to simulate a 

cellular environment. 

It is worth recalling that the objective of these tests is to ad-

vocate the use of MEC to ensure on-the-fly transcoding and 

achieve results on its responsiveness. Responsiveness is the 

measured delay from the time of triggering the service to the 

actual QoE enhancement time. This responsiveness check was 

performed in two ways: 

a. The container is already active with pre-transcoded me-

dia files. Only the mixer functionality is used, and, thus, 

taken into account in the delay measurement. 

b. Using the full functionality of on-the-fly transcoding by 

booting a container, initiating the service, transcoding 

the media file and then performing the mixing. 

The media file used for this test purpose was 9 minute 56 

seconds long with 298 segments in total, each comprising of 2 s 

of video. The reporter information was sent exactly after 2 s of 

video has been played (considering video play-time). To per-

form QA operation, the tool requires the information of 16 s of 

played video. Therefore, the MOS calculation was performed 

only after information of a total of 8 segments were received. 

The MOS values are represented in a scale of 1 to 5. The value 

below 3.5 was considered low and was used to trigger the EO. 

 

 
Fig. 4. MOS vs Time (with pre-transcoded media files). (Ms: mixing 

start time; Mc: mixing completion time). 
 

Case a. is represented in Fig. 4, where initially the MOS value 

was high. With time, it degraded and as soon it reached below 

the predefined threshold, mixing was initiated. In this scenario, 

pre-transcoded low bitrate files were copied to the streaming 

server’s desired location and replaced the existing ones. To save 



 

time, only the segments which were yet to be downloaded by 

the client were replaced. The replacement occurs in a sequential 

manner. As a result, although the mixing time was approxi-

mately 26 s, the QoE started enhancing as soon as few segments 

were delivered. 

 

 
Fig. 5. MOS vs Time (full functionality). (Ti: transcoding container 

initiated; Tc: transcoding completed; Ms: mixing started; Mc: mixing 

completed). 
 

Fig.5 depicts the full functionality as mentioned in case b. 

‘Ti’ represents the time when container initiation started. The 

time difference between the QA triggering the EO and the EO 

starting the creation of the container is in the milliseconds 

range. The container boots up with the already prepared trans-

coder image template (within 3 secs). Once it is ready, the EO 

signals to start the transcoding with the mentioned rate. Having 

limited resources (2 vCPU & 1024MB RAM) the container 

performs this total operation in approximately 1 minute 10 

seconds. The mixer operation starts as soon as the transcoding is 

over. In-between, the EO sends the information of the last 

downloaded file to indicate from which segment the mixing will 

start. The mixer operation takes almost similar time as men-

tioned before (in case a.) and depends on the number of seg-

ments to be transferred and replaced. 

 

 
Fig. 6. Segment buffering time (∆t) vs Segment ID. (Ti: transcoding 

container initiated; Tc: transcoding completed; Ms: mixing started; 

Mc: mixing completed; when Segment buffering time = ‘0’, corre-

sponding segments are not downloaded in advance). 
 

In Fig. 6, the segment buffering time (Δt) is the time a 

downloaded segment spends in the buffer waiting for playout. 

In other words, it is the time difference between the instant its 

playout started and the instant it was fully downloaded. It is 

clear that initially the segment buffering time was high, which 

indicates that the segments were downloaded in advance. As a 

result, the immediate next few segments were already down-

loaded and ready before it was being played. Therefore, there 

was no buffering delay, and thus no playout interruptions, hence 

the MOS was high (if compared with Fig. 5). When we intro-

duced a degradation in network conditions, emulating conges-

tion due to significant background traffic, the downloading 

segment time increased because of a reduction in the available 

bandwidth. At a point when the difference (Δt) was almost zero, 

the video experienced buffering delays as it had to wait till the 

downloading of a segment is complete. However, after trans-

coding to a lower-bitrate video, the segment size, as well as the 

segment download time, reduced. Consequently, adapting video 

bandwidth demands to the current network traffic conditions 

lead to timely video segment downloads, and minimized play-

back buffering time. This positively impacted the overall MOS. 

To this extent the PSQA tool helped in somehow avoiding 

that ping pong effect of the mobile network, as it outputs one 

"average" value every 16s. Moreover, the simulation was per-

formed using only two types of media files. Furthermore, finer 

granularity can be achieved by properly setting the QoE 

threshold, by increasing the intelligence of the EO in terms of 

variety of bitrates and finally by advanced lightweight trans-

coding techniques with less startup latency.  

V. CONCLUSION  

In this paper, we proposed a scheme that reflects QoE in 

deciding, in an autonomic manner, when to enforce transcoding 

in an edge environment to increase the service quality. The 

proposed scheme features a cognitive way in selecting the best 

suitable media profile by utilizing the concept of 

on-the-fly-transcoding, as one of the future applications of 

MEC. Instead of accepting the pre-selected bitrate of the 

streamed video from the content provider’s end, this framework 

enforces the edge to customize the content based on the user’s 

expectation. The framework was validated using a real life 

testbed, and interesting results were obtained on response times. 

Based on the obtained result, it can be concluded that MEC 

awaits a lightweight transcoding functionality, which can 

convert this proof-of-concept to reality. This defines one of the 

authors’ future research directions in this area.   
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