

On-the-fly QoE-Aware Transcoding in the Mobile Edge

Sunny Dutta1, Tarik Taleb 1, Pantelis A. Frangoudis 2, and Adlen Ksentini 3
1 Aalto University, Espoo, Finland

2 IRISA, Rennes, France
3 Eurecom Institute, Nice, France

Emails: {firstname.lastname}@aalto.fi; pantelis.frangoudis@irisa.fr; adlen.ksentini@eurecom.fi}

Abstract – To enhance video streaming experience for mo-

bile users, we propose an approach towards Quali-

ty-of-Experience (QoE) aware on-the-fly transcoding. The

proposed approach relies on the concept of Mobile Edge

Computing (MEC) as a key enabler in enhancing service

quality. Our scheme involves an autonomic creation of a

transcoding service as a Virtual Network Function (VNF)

and ensures dynamic rate switching of the streamed video

to maintain the desirable quality. This edge-assistive

transcoding and adaptive streaming results in reduced

computational loads and reduced core network traffic. The

proposed solution represents a complete miniature content

delivery network infrastructure on the edge, ensuring re-

duced latency and better quality of experience.

I. INTRODUCTION

The telecom world has experienced a rapid development in

the mobile communication technology over the last few years.

With high-end devices (e.g., smartphones and tablets) and new

interactive mobile applications in place, mobile data usage is on

the rise. Services such as video, music, and social networking

are gaining momentum. According to the Cisco Visual Net-

working Index [1], it is estimated that by 2020, 75% of the

global mobile data traffic will be occupied by video streaming

services. In the recent years, user demand has also shifted from

traditional broadcasted video to dynamic on-demand live

streaming and to mobile video viewing. As these services are

becoming an integral part of the mobile users’ entertainment

and social life, user expectations towards high Quality of Ex-

perience (QoE) are also increasing. The soaring demands for

video services with guaranteed quality are now becoming

challenging for the service providers. High data rate connectiv-

ity to ever-growing data volumes and provisioning a reliable

and scalable network to ensure better Quality-of-Service (QoS)

are now the prime focus of content providers as well as of

mobile network operators.

Traditional video streaming was designed considering a sta-

ble Internet link and a limited type of end-user devices. But with

the typical link bandwidth variations in the present mobile

networks, along with an increase in diverse types of end-user

devices, the traditional technology has started to fall behind.

This resulted in poor video viewing experience due to its

non-scalable and maladaptive nature.

At the media encoding level, to address the scalability sup-

port for a diverse range of devices, the Scalable Video Coding

(SVC) mechanism [2] is introduced. Media profiles with mul-

tiple subsets (e.g., comprising various formats, screen resolu-

tions, and frame rates) are stacked as layers in a single media

file. The base layer is necessary to decode the video with

minimum quality, while enhancement layers add spatial and

temporal information to increase the delivered video quality.

SVC can be combined with adaptive bitrate streaming tech-

niques (i.e., MPEG DASH and Apple HLS) to adapt to varying

network bandwidth. Media files are segmented in chunks, and a

manifest file with information of the available profiles/video

representations is made available to the end users. The latter can

then decide on the desired representation to retrieve media,

based on the profiles the end-user device supports. It can then

dynamically switch among the available video bitrates (i.e.,

qualities) to better cope with network dynamics, aiming to

achieve continuous playout. For example, a client can monitor

the download time of chunks and if the required download time

fails to meet the desired time, the client device can automati-

cally switch to a lower profile. Maintaining a huge number of

profiles remains a storage challenge for adaptive video delivery

systems, and SVC technologies can assist to this end.

Numerous advances have recently also taken place in the

content delivery infrastructure front. In a present day scenario,

thousands of video content items are uploaded daily to the

content provider’s network. This content is stored in large

volumes in the provider’s centralized content database, and is

then transcoded from source format to final delivery format.

After this computationally intensive transcoding process, the

prepared content is then transferred to multiple streaming

servers (residing at the edge of the content provider’s network)

for further delivery to the users. To this extent, cloud computing

has played a key role. The on-demand provisioning and au-

to-scaling features of the cloud supply service providers with

scalable resources, such as huge computing power and storage,

and facilitate service and infrastructure management.

Unlike some typical enterprise cloud applications, video

services are highly time-sensitive. Therefore, apart from storage

and transcoding functionality, they also require the delivery of

content in real-time. But with the present 4G and cloud infra-

structure support, users still experience buffering delays and

intermittent playback interruptions. This is mainly due to the

congestion that appears more often in the core network, which

leads to higher end-to-end latency and jitter. Thus, extending

cloud-based services to mobile environments requires a few

more factors to be considered for quality enhancement, such as

wireless link dynamics, user mobility, latency, and core net-

work traffic.

The next generation of mobile systems, commercially known

as 5G, aims at addressing these issues. Relying on technologies

such as Network Function Virtualization (NFV), Software

Defined Networking (SDN), and Mobile Edge Computing

(MEC), 5G promises to attain system flexibility, elasticity and

agility. The reformation of the cloud hierarchy towards a de-

centralized architecture and pushing computing resources close

to mobile users (i.e., at the mobile network edge) is expected to

provide effective solutions to these limitations. The concept

behind MEC is to provide storage and computation resources

from the network edge, in the proximity of users. Accordingly,

pushing data processing from remote cloud locations to the edge

and processing data “locally” can reduce traffic bottlenecks in

the core network. Besides, it can help in offloading important

computational load from power-constrained user equipment to

the edge while ensuring short end-to-end latency.

There are high expectations on how MEC can empower video

streaming services. In this paper, we do not go deep in opti-

mizing transcoding techniques but, rather, we focus on using

transcoding as an enabling service at the mobile edge to enhance

video quality. This paper proposes a scheme to achieve fine

granularity in bitrate selection for adaptive streaming based on

real-time perceived video quality monitoring, using QoE esti-

mation techniques. Degradation in perceived quality triggers an

on-the-fly transcoding (OTFT) service at the mobile edge to

vary the bitrate of the stream, a process which continues until

optimal quality is achieved. Our objective is to demonstrate how

the QoE of a video service can be maintained by enforcing

transcoding as a requirement-based Virtual Network Function

(VNF). Additionally, our scheme reflects the reduction in

queuing delay in transcoding and performing quality assisted

video streaming.

The remainder of this paper is organized as follows. Section

II presents some related work. Section III describes our pro-

posed OTFT framework, along with its supporting mechanisms.

For the sake of performance evaluation, Section IV portrays our

experimental setup and discusses the obtained results. We

conclude the paper by summarizing our main findings in Sec-

tion V.

II. RELATED WORK

MEC has been proposed as an enabler for novel, low-latency

services in a mobile network. Considering its potential, both

industry and the research community are working on maxim-

izing the benefit and efficiency of the MEC technology. As

discussed in [3], [4], such decentralized architecture with sup-

port for fault resiliency will enable new services and promising

business models. Importantly, MEC has been considered to be

the key player in mobile video applications.

In the context of video streaming, the proposed two-hop edge

architecture in [5] reflects the data transfer rate and throughput

of the edge in comparison with the remote cloud. The research

work in [6] introduces a network-assisted adaptive streaming

application to enhance QoE of the delivered multimedia content.

An architecture with distributed parallel edges to increase QoE

for content delivery has been proposed by Zhu et al. in [7].

Chang et al. [4] deploy independent small-scale datacenters at

the network edges, which are capable of performing video

caching and streaming on their own. Jararweh et al. [8] integrate

caching with proxy functionality at the edge to store media

content. They also enforce computation offloading to increase

the lifetime of mobile devices.

Video transcoding in the cloud has recently received signif-

icant research attention. Utilizing virtual instances of the cloud

to perform video transcoding upon request has been proposed in

[9], [10] as the most simple and straightforward use case. The

work in [11] and [12] propose cloud-assisted video transcoding.

Utilization of cloud resources to assist mobile devices for cus-

tomized transcoding services [13] and for energy conservation

on mobile devices [14] has also been proposed. As an efficient

way of video transcoding in the cloud, an approach to reduce the

bitrate of the transcoded video by using a higher quantization

parameter without reducing the frame size or the frame rate has

been proposed in [15]. Transcoding only portion of a video to

reduce the transcoding time [16], [17] and distributed video

transcoding in the cloud to enhance efficiency have also been

studied in [18], [19]. Amazon in its recent development [20] has

introduced an elastic transcoder to reduce time of the intensive

transcoding service.

In all the above research works, MEC is deemed to be a

promising solution for handling video services, although mainly

focusing on streaming, caching and compression techniques;

the computationally intensive transcoding functionality has

been generally proposed to be treated on the cloud-based infra-

structure. Energy-efficient video transcoding as a network

function at the edge has been proposed in [21] for a Voice over

Long Term Evolution (VoLTE) service.

In our prior work [22], we focused on the effects of pro-

cessing load on user experience, and proposed a QoE-driven

mechanism for elastic compute resource allocation in a

cloud-native 5G environment. In this work, we address issues

that pertain to network-related resources and effects. To the best

of the authors’ knowledge, QoE-aware on-the-fly transcoding

along-with bitrate variation in adaptive streaming at the mobile

edge for content delivery has not been yet considered. In this

paper, we describe and showcase an innovative transcoding and

streaming scenario leveraging the potential of MEC.

III. PROPOSED OTFT SCHEME

A. Use cases

In a real-life scenario, many use cases can be considered in-

volving video streaming from the edge. We here consider two

use cases where fine-grained on-the-fly transcoding will en-

hance users’ video experience:

 Use case 1: Bob and Alice are two friends residing in the

same city in the vicinity of the same mobile edge node.

Bob has one high-end smart phone capable of taking High

Definition (HD) videos whereas Alice’s device supports

only Standard Definition (SD) quality. We consider a

situation where Bob takes a HD video of some funny

moments and wants to immediately share it with Alice. He

uploads the video to the nearest edge tagging Alice. Alice,

upon receiving the notification, clicks to play the video.

Due to unsupported resolution, Alice will experience

buffering when playing the content. The edge, being

smarter in this case, will make use of its on-the-fly

transcoding capabilities to convert the high-bitrate source

format to a lower bitrate one. This will help Alice to view

the video more smoothly. The relevant operations, in-

cluding uploading, transcoding, and streaming, will take

place in the edge without involving the content provider’s

backend cloud network.

 Use case 2: Bob is waiting for his next transit flight in a

busy airport and wants to watch some music video for

leisure. He connects to the nearby edge and starts receiv-

ing the video stream. The edge server has adaptive

streaming enabled with contents of only HD quality.

However, due to limited network bandwidth and the un-

availability of other low-bitrate profiles of the media

content, Bob will experience buffering delays and, thus,

reduced QoE. In such a situation, the edge will spin up the

transcoding service to create media content with a lower

bitrate than HD. Upon completion, the newly prepared

content will be streamed. Bob’s QoE will be monitored,

and this process of fine tuning will continue in a recurring

manner, until a smooth viewing experience is achieved.

This will both balance user experience and improve net-

work resource utilization and, thus, network availability.

In this paper, we consider a lightweight, container-based

transcoding service to meet the requirements of the aforemen-

tioned use cases, with more focus on fine bitrate granularity and

the on-the-fly transcoding aspect of Use case 2.

B. Proposed OTFT Architecture

The proposed OTFT architecture, represented in Fig. 1, is

based on a two-tier principle. The content provider’s

cloud-based network consists of a centralized content database

(CCD), a transcoder, and a segmenter. The cloud has its own

orchestrator to manage its infrastructure and resources. The

uploaded content from the content producers are initially stored

in the CCD. The content is then sent to the transcoder to perform

H.264/AVC transcoding. Note that the use of SVC technologies

is an option that can offer storage advantages, since all available

video representations can be stored in a single file. However,

our design considers H.264/AVC encoding, which is also more

widely supported. The prepared content is finally segmented in

chunks and is prepared for adaptive streaming by the segmenter.

Streaming-ready contents are then transferred to the streaming

server (SS). The SS is hosted in the MNO’s edge network node

and is responsible to further deliver the video stream to the end

user’s device. An additional component, the cloud controller

(CC), is considered. The CC is responsible for business-related

functionality and maintains the Service Level Agreement (SLA)

between the content provider and the mobile network operator

(MNO). This deals with the content provider’s access rights

over the MNO’s network to manage the SS. The dotted line

between CC and the Edge Orchestrator (EO) represents

agreement level connectivity.

The Edge Node (EN) is hosted on virtual machines on top of

existing hardware in the MNO’s edge network. The EN runs its

own compute and storage services. The compute one is re-

sponsible for hosting container-based applications on the edge,

and the storage one is used to host the container image templates.

The EN and all its services are managed by the EO. These

services are hosted in containers inside the edge, and the EO

controls their deployment and management.

Fig. 1. Proposed OTFT Architecture.

The primary service components considered here are:

a. Streaming Server: Part of the content provider’s net-

work, and a container-based application to perform

adaptive streaming to the client. In this scenario, we have

considered HTTP live streaming (HLS), so the

pre-transcoded chunks of media segments (sent from the

segmenter) reside inside this server. Upon a client re-

quest, the manifest file with the media description and

structure is first served, and sequentially the chunks are

delivered.

b. Quality Assessor: It is responsible for assessing the

quality of the served video using the Pseudo-Subjective

Quality Assessment (PSQA) methodology. PSQA uses

machine learning techniques to train a Random Neural

Network (RNN) classifier on data from subjective tests

with human subjects, where specific parameters that af-

fect QoE are monitored while the viewer assesses the

quality of test video sequences in the scale from 1 (poor

quality) to 5 excellent quality). The resulting RNN can

then be used in real time, given that its input parameters

are measurable. In our case, we used the PSQA tool of

Singh et al. [23], which is trained to estimate QoE for an

adaptive streaming service of H.264/AVC-encoded

video. The input to this tool is the number, frequency and

duration of playout interruptions in a 16-second video

window, as well as the average value of the Quantization

Parameter (QP) (the input values have to be appropri-

ately normalized; for details see [23]). Its output is an

estimate of the Mean Opinion Score (MOS), i.e., the

expected quality rating in the 1-5 scale that a panel of

humans would give for a video under the specific QP and

interruption conditions.

The Quality Assessor receives real-time information of

the service status from the client. The status includes the

ID of the last downloaded segment and of the playing

segment, the playback interruption count and duration,

and the QP value of the video playing at the end-user

device. Considering these parameters, the PSQA model

generates a QoE estimate in real-time in an automatic

manner and without any human intervention. It also

performs a check on the calculated MOS value. It is

under the QA’s scope to trigger the EO for initiating

transcoding service.

c. Transcoder and mixer: It is a container-based virtual

transcoding service deployed by the EO. It is used to

transcode the source media format to another deliverable

format with a different bitrate. Once the newly prepared

content is ready, the mixer replaces the old content in the

streaming server with the new one. The triggering pro-

cess to deploy the transcoder and mixer service is as-

sisted by the EO. Once the required operation is done

and the target QoE level is achieved, the service is ter-

minated and removed from the EN.

Referring to Use case 2, the stepwise operational flow is de-

picted in Fig. 2. For the purpose of demonstration, let consider

that the streaming server stores HLS content with bitrate of R1

(high bitrate). Also, we consider here that the application used

to view the stream can provide the information necessary for

QoE estimation, i.e., the ability to measure playout interruption

and QP information and the reporter functionality. The inter-

ruption logger maintains a log of occurred interruptions count

and interruption duration of the played video segment. Simi-

larly, the QP logger tracks the QP value per picture macroblock

of the played video. The log values are finally handed over to

the reporter in real-time. The reporter also keeps information of

the downloaded segment ID, playing segment ID, and playout

start time.

Fig. 2. Signaling diagram.

To start the service, Bob connects to the edge and sends an

HTTP GET request to the server to fetch the playlist/manifest

file. Upon receiving the file, the end-user device starts sending

HTTP GET requests to fetch the media segments sequentially

one by one as detailed in the playlist/manifest. Once the initial

necessary playout buffer level is achieved the player starts

displaying the first segment and automatically moves on to the

second one, as soon as the first segment is over. At the end of

every segment, the reporter sends the whole set of information

to the QA. The QA performs a real-time calculation of the MOS

value at fixed intervals. If the desired value is above the optimal,

it reports that the QoE of the video is acceptable and no further

action is required until the next calculation time instance. On the

other hand, if the value decreases, the QA triggers the EO to

spin up the transcoder and mixer service.

The container is started (using template image from the EN)

and the transcoding of the media content is performed. The

bitrate is reduced to R2 (R2<R1), one step lower than the cur-

rent bitrate. Once the newly-built media content is ready, the EO

performs a check to get information on the last downloaded

segment ID. Upon confirmation, the EO then triggers the mixer

to replace the old segments (which are not yet fetched by the

client) with the new ones. Once the operation is finished, the EO

waits for the next QA information. If no information is received

within a certain interval, the EO considers that the target MOS

is achieved, and discards the service and stops the container.

However, if the QoE still remains low, the same operation is

performed again reducing the bitrate to R3 (R3<R2). This

stepwise recurring operation continues until a target optimal

QoE is achieved at the client end.

 It is worth noting that the proposed solution not only ensures

QoE, but also transforms the edge into a complete video deliv-

ery solution. Performing transcoding on-the-fly incurs com-

pute-intensive load only for a limited time. Furthermore, storage

overhead can be reduced, as pre-transcoded multiple versions

are not required from the beginning and can be generated

on-demand. Moreover, by serving the content locally (i.e., from

the edge), the solution ensures reduction in core network traffic

and reduced end-to-end latency.

C. Potential enhancements

Considering a mobile network, where network conditions are

dynamically changing due to user mobility, high sensitivity

towards transient events may lead to a “ping pong” effect,

where transcoding will be initiated every now and then with the

varying conditions of the network. Instead, the triggering should

be done only if the network conditions have actually degraded.

However, still the tradeoff between responsiveness and avoid-

ing the ping pong effect exists. Maintaining a sliding window of

QoE scores to decide on whether to initiate transcoding or not

based on a running average of the MOS (within that window)

can help address this issue.

Various further performance enhancements are also possible.

For example, the cross-layer mobility, bandwidth [24], and QoE

[25] prediction mechanisms that we have studied in our prior

work in similar contexts can be applied to this end. Such an

ability to predict the conditions at the client end can assist in

identifying the optimal time to initiate transcoding.

Depending on the resource availability in the EN, the trans-

coding service can be initiated in parallel to support multiple

end-user requests. Considering it as a compute-intensive task,

and in case of limited resources in the serving Edge, it is the

EO's responsibility to select another nearby edge (taking into

account response time and resource availability) to perform the

transcoding-only operation, leveraging the shared infrastructure

concept of MEC.

 The concept can be further enhanced by introducing smart

algorithms in the selection of the steps for bitrate variation.

Also, introducing advanced transcoding techniques may reduce

the delay incurred from triggering till completion. Moreover, if

the video is almost towards the end (i.e., the remaining video

time is less than the transcoding time), the service initiation may

simply be omitted.

IV. PERFORMANCE EVALUATION

Fig. 3 portrays the testbed environment which we have built

to simulate the proposed edge-based transcoding and streaming

service. The content provider’s cloud-based network is not

simulated, as we have considered that the media content for

adaptive streaming is ready and is already stored in the

streaming server. The simulation environment is mostly focused

towards assessing the performance of the edge. Our testbed is

simulated with two laptops (with Ubuntu 14.04.3 LTS desktop

OS), where one is the edge node and the other is the client.

The client was simulated using a version of the VLC player

which we modified to implement QP and interruption moni-

toring. The reporter functionality was implemented in a python

script, which retrieves the required information, filters it, and

passes it on to the QA database residing in the EN.

Fig. 3. Test-bed setup.

On the edge side, two VirtualBox VMs were used. VM1 was

used as a gateway for the entire network to access the Internet.

DHCP with authentication was also set up inside VM1 to con-

figure the whole network using a single subnet (for ease of the

simulation). VM2 was configured using the Proxmox Virtual

Environment to act as the EN. We use OpenVZ containers to

host the services of our architecture in our testbed. The

streaming server functionality was achieved using an Ubuntu

cloud minimal image using Nginx as the webserver inside an

Openvz container. Nginx was also configured for HLS

streaming. The content for initial streaming was pre-transcoded

and prepared using ffmpeg, and the video codec used was

H.264/AVC. The same container is used as storage for the

media files. The QA was configured to receive interruption and

QP information periodically from the database and appropri-

ately normalize/transform them to be used as input to the PSQA

tool to calculate the expected MOS values. The same QA script

was responsible for the evaluation of the MOS values and

triggering the EO. The automated orchestration was performed

with a script serving the functionality of EO for spinning up the

container which provides the transcoding service. The trans-

coding container template was built with an Ubuntu minimal

image and had ffmpeg installed. This service was configured to

start on boot. The mixer functionality was created with a script

residing inside the same container. Finally, to ensure that the

laptop acted as an edge access point, its wireless LAN interface

was configured using hostapd in IEEE.802.11 master mode.

Also, Netem and Wondershaper tools were used to simulate a

cellular environment.

It is worth recalling that the objective of these tests is to ad-

vocate the use of MEC to ensure on-the-fly transcoding and

achieve results on its responsiveness. Responsiveness is the

measured delay from the time of triggering the service to the

actual QoE enhancement time. This responsiveness check was

performed in two ways:

a. The container is already active with pre-transcoded me-

dia files. Only the mixer functionality is used, and, thus,

taken into account in the delay measurement.

b. Using the full functionality of on-the-fly transcoding by

booting a container, initiating the service, transcoding

the media file and then performing the mixing.

The media file used for this test purpose was 9 minute 56

seconds long with 298 segments in total, each comprising of 2 s

of video. The reporter information was sent exactly after 2 s of

video has been played (considering video play-time). To per-

form QA operation, the tool requires the information of 16 s of

played video. Therefore, the MOS calculation was performed

only after information of a total of 8 segments were received.

The MOS values are represented in a scale of 1 to 5. The value

below 3.5 was considered low and was used to trigger the EO.

Fig. 4. MOS vs Time (with pre-transcoded media files). (Ms: mixing

start time; Mc: mixing completion time).

Case a. is represented in Fig. 4, where initially the MOS value

was high. With time, it degraded and as soon it reached below

the predefined threshold, mixing was initiated. In this scenario,

pre-transcoded low bitrate files were copied to the streaming

server’s desired location and replaced the existing ones. To save

time, only the segments which were yet to be downloaded by

the client were replaced. The replacement occurs in a sequential

manner. As a result, although the mixing time was approxi-

mately 26 s, the QoE started enhancing as soon as few segments

were delivered.

Fig. 5. MOS vs Time (full functionality). (Ti: transcoding container

initiated; Tc: transcoding completed; Ms: mixing started; Mc: mixing

completed).

Fig.5 depicts the full functionality as mentioned in case b.

‘Ti’ represents the time when container initiation started. The

time difference between the QA triggering the EO and the EO

starting the creation of the container is in the milliseconds

range. The container boots up with the already prepared trans-

coder image template (within 3 secs). Once it is ready, the EO

signals to start the transcoding with the mentioned rate. Having

limited resources (2 vCPU & 1024MB RAM) the container

performs this total operation in approximately 1 minute 10

seconds. The mixer operation starts as soon as the transcoding is

over. In-between, the EO sends the information of the last

downloaded file to indicate from which segment the mixing will

start. The mixer operation takes almost similar time as men-

tioned before (in case a.) and depends on the number of seg-

ments to be transferred and replaced.

Fig. 6. Segment buffering time (∆t) vs Segment ID. (Ti: transcoding

container initiated; Tc: transcoding completed; Ms: mixing started;

Mc: mixing completed; when Segment buffering time = ‘0’, corre-

sponding segments are not downloaded in advance).

In Fig. 6, the segment buffering time (Δt) is the time a

downloaded segment spends in the buffer waiting for playout.

In other words, it is the time difference between the instant its

playout started and the instant it was fully downloaded. It is

clear that initially the segment buffering time was high, which

indicates that the segments were downloaded in advance. As a

result, the immediate next few segments were already down-

loaded and ready before it was being played. Therefore, there

was no buffering delay, and thus no playout interruptions, hence

the MOS was high (if compared with Fig. 5). When we intro-

duced a degradation in network conditions, emulating conges-

tion due to significant background traffic, the downloading

segment time increased because of a reduction in the available

bandwidth. At a point when the difference (Δt) was almost zero,

the video experienced buffering delays as it had to wait till the

downloading of a segment is complete. However, after trans-

coding to a lower-bitrate video, the segment size, as well as the

segment download time, reduced. Consequently, adapting video

bandwidth demands to the current network traffic conditions

lead to timely video segment downloads, and minimized play-

back buffering time. This positively impacted the overall MOS.

To this extent the PSQA tool helped in somehow avoiding

that ping pong effect of the mobile network, as it outputs one

"average" value every 16s. Moreover, the simulation was per-

formed using only two types of media files. Furthermore, finer

granularity can be achieved by properly setting the QoE

threshold, by increasing the intelligence of the EO in terms of

variety of bitrates and finally by advanced lightweight trans-

coding techniques with less startup latency.

V. CONCLUSION

In this paper, we proposed a scheme that reflects QoE in

deciding, in an autonomic manner, when to enforce transcoding

in an edge environment to increase the service quality. The

proposed scheme features a cognitive way in selecting the best

suitable media profile by utilizing the concept of

on-the-fly-transcoding, as one of the future applications of

MEC. Instead of accepting the pre-selected bitrate of the

streamed video from the content provider’s end, this framework

enforces the edge to customize the content based on the user’s

expectation. The framework was validated using a real life

testbed, and interesting results were obtained on response times.

Based on the obtained result, it can be concluded that MEC

awaits a lightweight transcoding functionality, which can

convert this proof-of-concept to reality. This defines one of the

authors’ future research directions in this area.

Acknowledgment

This work was partially supported by the TAKE 5 project

funded by the Finnish Funding Agency for Technology and

Innovation (TEKES) and in part by the Finnish Ministry of

Employment and the Economy.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2015–2020,” [Online] http://

www.cisco.com/c/en/us/solutions/collateral/service-provider/vis

ual-networking-index-vni/ mobile-white-paper-c11-520862.pdf,

February 2016.

[2] H. Schwarz, D. Marpe and T. Wiegand, “Overview of the Scala-

ble Video Coding Extension of the H.264/AVC Standard,” IEEE

Transactions on Circuits and Systems for Video Technology, Vol.

17, No. 9, Sept. 2007, pp. 1103-1120.

[3] European Telecommunications Standards Institute (ETSI), “Ex-

ecutive Briefing – Mobile Edge Computing (MEC) Initiative –

Issue 1”, [Online] https://portal.etsi.org/portals/0/tbpages/

mec/docs/mec%20ex-ecutive%20brief%20v1%2028-09-14.pdf,

Sep. 2014.

[4] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman,"Bringing the

cloud to the edge," in Proc. IEEE Conf. on Computer Communi-

cations Workshops (INFOCOM WKSHPS), Toronto, ON, Can-

ada, May 2014.

[5] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of

Cloudlets on Interactive Mobile Cloud Applications,” in Proc.

IEEE 16th Int’l Conf. on Enterprise Distributed Object Compu-

ting Conference (EDOC), Beijing, China, Sep. 2012.

[6] J. Fajardo, I. Taboada, and F. Liberal, “Improving content deliv-

ery ef-ficiency through multi-layer mobile edge adaptation”, in

IEEE Net-work Mag., Vol. 29, No. 6, Dec. 2015, pp. 40-46.

[7] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia Cloud Com-

pu-ting ,“ in IEEE Signal Processing Mag., Vol. 28 , No. 3, May

2011, pp. 59-69.

[8] Y. Jararweh, L.Tawalbeh, F. Ababneh, and F.Dosari, “Resource

Efficient Mobile Computing Using Cloudlet Infrastructure,” in

Proc. IEEE 9th Int’l. Conf. on Mobile Ad-hoc and Sensor Net-

works (MSN), Dalian, China, Dec. 2013.

[9] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-Assisted Live

Media Streaming for Globalized Demands with Time/Region

Diversities,” in Proc. IEEE Conf. on Computer Communications

(INFOCOM), Orlando, Florida, Mar. 2012

[10] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, and P. Huang, “Meeting

Service Level Agreement Cost-Effectively for Video-on-Demand

Applications in the Cloud,” in Proc. of IEEE Conf. on Computer

Communications (INFOCOM), Toronto, Canada, May 2014.

[11] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A Cloud-Based

Transcoding Framework for Real-Time Mobile Video Confer-

encing System,” in Proc. of 2nd IEEE Intl. Conf.on Mobile Cloud

Computing, Services, and Engineering (MobileCloud), London,

UK, April 2014.

[12] Y. Wu, C. Wu, B. Li, and F. C. Lau, “vSkyConf: Cloud-assisted

Multiparty Mobile Video Conferencing,” in Proc. of the 2nd

ACM SIGCOMM Workshop on Mobile Cloud Computing, Hong

Kong, China, Aug. 2013.

[13] M. Chen, “AMVSC: A Framework of Adaptive Mobile Video

Streaming in the Cloud,” in Proc. of IEEE Global Communica-

tions Conference (GLOBECOM), Anaheim, California, Dec.

2012.

[14] W. Zhang, Y. Wen, and H.-H. Chen, “Toward Transcoding as a

Service: Energy-Efficient Offloading Policy for Green Mobile

Cloud,” IEEE Network, Vol. 28, No. 6, Nov. 2014, pp. 67–73.

[15] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit Rate Reduc-

tion Video Transcoding with Distributed Computing,” in Proc. of

20th Intl. Conf. on Parallel, Distributed and Network-Based Pro-

cessing (PDP), Garching, Germany, Feb. 2012.

[16] F. Lao, X. Zhang, and Z. Guo, “Parallelizing Video Transcoding

Using Map-Reduce-Based Cloud Computing,” in Proc. of IEEE

Intl. Symposium on Circuits and Systems (ISCAS), Seoul, Korea,

May 2012.

[17] G. Gao, W. Zhang, Y. Wen, Z. Wang, W. Zhu, and Y. P. Tan,

“Cost Optimal Video Transcoding in Media Cloud: Insights from

User Viewing Pattern,” in Proc. of IEEE Intl. Conf. on Multime-

dia and Expo (ICME), Chengdu, China, July 2014.

[18] A. Heikkinen, J. Sarvanko, M. Rautiainen, and M. Ylianttila,

“Distributed Multimedia Content Analysis with MapReduce,” in

Proc. of 24th IEEE Intl. Symposium on Personal Indoor and

Mobile Radio Communications (PIMRC), London, UK, Sept.

2013.

[19] M. Kim, S. Han, Y. Cui, H. Lee, H. Cho, and S. Hwang,

“CloudDMSS: Robust Hadoop-Based Multimedia Streaming

Service Architecture for a Cloud Computing Environment,”

Cluster Computing, Vol. 17, No. 3, Sept. 2014, pp. 605–628.

[20] Amazon, “Amazon Elastic Transcoder,” [Online] https://

aws.amazon.com/elastictranscoder/

[21] M. T. Beck, S. Feld, A. Fichtner, C. L. Popien and T. Schimper,

“ME-VoLTE: Network functions for energy-efficient video

transcoding at the mobile edge ,” in Proc. of 18th Intl. Conf. on

Intelligence in Next Generation Networks (ICIN), Paris, France,

Feb. 2015.

[22] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware Elasticity Sup-

port in Cloud-Native 5G Systems,” in Proc. IEEE ICC’16, Kuala

Lumpur, Malaysia, May 2016.

[23] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of expe-

rience estimation for adaptive HTTP/TCP video streaming using

H.264/AVC,” in Proc. IEEE Consumer Communications and

Networking Conference (CCNC), Las Vegas, NV,USA, Jan.

2012.

[24] A. Nadembega, A. Hafid, and T. Taleb, “An Integrated Predictive

Mobile-Oriented Bandwidth-Reservation Framework to Support

Mobile Multimedia Streaming,” IEEE Trans. on Wireless Com-

munications, Vol. 13, No. 12, Dec. 2014, pp. 6863 – 6875.

[25] A. Ksentini, T. Taleb, and K.B. Letaif, "QoE-Based Flow Ad-

mission Control in Small Cell Networks," IEEE Trans. Wireless

Communications, Vol. 15, No. (4), 2016, pp. 2474-2483.

