
IEEE NETWORK MAGAZINE, VOL. **, NO. **, MONTH ** 1

Net-in-AI: A Computing-Power Networking
Framework with Adaptability, Flexibility and

Profitability for Ubiquitous AI
Xiaofei Wang, Senior Member, IEEE, Xiaoxu Ren, Student Member, IEEE, Chao Qiu, Member, IEEE,

Yifan Cao, Student Member, IEEE, Tarik Taleb, Senior Member, IEEE, Victor C.M. Leung, Life Fellow, IEEE

Abstract—Along with the unprecedented development of ar-
tificial intelligence (AI), a considerable number of intelligent
applications are universally recognized to significantly facilitate
the evolution of anthropogenic activities. The abundant AI
computing power is one of the main pillars to fuel the booming of
ubiquitous AI applications. As the computing power proliferates
to a multitude of network edges, even end devices, the networking
function bridges the gap, on the one hand, among ends-edges-
clouds, on the other hand, between the multiple AI computing
power and the heterogeneous AI requirements. The emerging
new opportunities have spawned the deep integration between
computing and networking. However, the complete development
of the integrated system is under-addressed, including adapt-
ability, flexibility, and profitability. In this paper, we propose
a computing-power networking framework for ubiquitous AI by
establishing Networking in AI computing-power pool, denoted as
Net-in-AI. We design the framework to enable the adaptability
for computing-power users, the flexibility for networking, and the
profitability for computing-power providers. We then formulate
a computing-networking resource allocation problem, with the
joint perspective of these three aspects. Experimental results
prove the superior performance of the proposed framework in
comparison to the current popular schemes.

Index Terms—Computing-networking integration, artificial in-
telligence, adaptability, flexibility, profitability.

I. INTRODUCTION

The past few years have witnessed the unparalleled devel-
opment of artificial intelligence (AI). Coupled with the rise
of AI, a number of intelligent applications are universally
recognized to significantly propel the social evolution, such as
speech recognition, natural language generation, and virtual
agents, etc. The abundant computing power, as one of the
main pillars of AI, fuels the booming of ubiquitous AI appli-
cations [1]. As such, the burgeoning AI computing technology
and framework, featured by heterogeneous, accelerated and
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programmable computing, open up countless possibilities for
meaningful research and applications of AI.

Before the emergence of fifth-generation (5G) networks,
mega-scale data were generally generated and cached at a
single or a few data centers, which spawned a great deal
of traditional cloud-centric approaches for efficient computing
and resource management. However, the rising of the beyond
5G (B5G, alternatively termed as 6G) [2] has brought forth
zillions of bytes of data to network edges. Consequently, it
would accelerate the proliferation of computing power from
a few centers to a multitude of network edges, even end
devices [3]–[5]. The problem of management and allocation
of computing power at a couple of data centers is moderately
non-trivial, while for multi-mode and multi-level computing
power, it is prohibitively difficult. Additionally, the networking
function bridges the gap among end devices, network edges,
and clouds, and also, between various computing power and
diversified requirements. Obviously, the emerging new oppor-
tunities have spawned the deep integration between computing
and networking for ubiquitous AI.

However, there are many issues that need to be addressed
before integrated computing-networking system becomes a
mature technology, including 1) how to provide users with
adaptable computing services, so as to satisfy users’ diverse
requirements. These varied needs of users have opened up
intense and adaptive demands of AI computing power; 2)
how to support flexible networking service, so as to achieve
rapid response. To be specific, networking provides access to
multifarious AI services by a multitude of collaborative end
devices, edge nodes, and clouds. Such cooperation needs to
overcome network congestion, low resource utilization, etc; 3)
how to ensure the welfare for computing-power providers, so
as to maximize the profitability of the computing-networking
system. It is well known that one of the main factors to
motivate the wide deployment of such systems is the incentive
mechanism and business model. Therefore, it is necessary to
deeply consider the incentive to help others perform tasks, via
contributing one’s own computing power. Overall, adaptabil-
ity, flexibility and profitability are three main metrics for the
integrated AI computing-networking system.

Blockchain, as the underlying technology of crypto-
currencies, has been a relatively recent technological trend.
It is an open, cryptographic, and decentralized system, main-
taining immutable ledgers that are accessible but tamper-
proof for all users. Specifically, blockchain systems are hun-
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gry for computing power. For example, one of the most
commonly used consensus protocols, Proof of Work (PoW),
usually requires large amounts of computing power to break
a cryptography puzzle through brute-force [6]. As such, some
works study efficient consensus mechanisms to replace PoW,
including replica-based and learning-based consensus proto-
cols. However, a replica-based consensus protocol, such as
Practical Byzantine Fault Tolerance (PBFT), has been proved
ineffective in dealing with the problem of resource wastage
[7]. In this paper, we utilized Proof of Learning (PoL), one
of the learning-based protocols, to replace the cryptography
puzzle. PoL treats the process of training neural networks
(NNs) as a working puzzle to unlock the potential of sharing
more advanced intelligence among edges [8].

Therefore, the incorporation of blockchain into integrated
computing-networking systems is synergistically beneficial.
For integrated computing-networking systems, blockchain
promises several benefits of incentive mechanism, reliable and
traceable sharing of computing power. Moreover, the efficient
consensus protocol-based blockchain economically consumes
computing power to achieve a win-win situation, constructing
the blockchain, while training NNs at the same time. For
the blockchain, the integrated computing-networking system is
functionally necessary due to its large volumes of computing
and networking supplement. The main contributions of this
article can be summarized as follows.
• We propose a computing-power networking framework

for ubiquitous AI by establishing blockchain and multi-
level Networking in AI computing-power pool, denoted
as Net-in-AI, this framework enables incentive and intel-
ligent computing-networking amalgamation.

• We introduce an AI Computing-Power Allocation Mech-
anism and consider the adaptability, flexibility and prof-
itability as three metrics to evaluate the performance of
the integrated AI computing-networking system.

• We formulate a computing-networking allocation prob-
lem, with the joint perspectives of users, networking and
computing-power providers. Experimental results prove
the superior performance of the proposed framework to
the current popular ones.

The rest of this article is organized as follows. The pro-
posed framework, along with a use case of the framework, is
described in Section II. Section III then presents the problem
formulation of computing-networking allocation. Simulation
results are presented and discussed in Section IV. Finally,
concluding remarks are given in Section V.

II. PROPOSED FRAMEWORK OF THE AMALGAMATED
SYSTEM

In this section, we first present the proposed framework,
followed by a use case of the proposed framework.

A. Framework

The complete development of the Net-in-AI framework is
no silver-bullet due to the Trilemma, e.g., the adaptive comput-
ing demands from users, the flexible networking management
requisitions, and the incentive requirements from providers.

In most existing works [9], [10], the computing demands,
the networking managements and the incentive are studied
separately. However, they are all the underlying promoters
enabling the integrated system. How to abstract and allo-
cate resources, as well optimize these three problems have
significant impacts on the performance of the framework,
while the role of blockchain and application scenarios should
not be overlooked yet. Therefore, in this article, we propose
a computing-power networking framework with adaptability,
flexibility, and profitability for ubiquitous AI, as shown in Fig.
1. This framework is composed of the following layers.

1) Infrastructure Layer: The comprehensive constructions
of B5G and edge computing are accelerating the proliferation
of AI computing power from clouds, to network edges and
end devices, characterized by economical mobile broadband,
low latency, and high privacy. End devices, e.g., monitors and
sensors, network edges, e.g., base stations and gateways, as
well clouds are jointly considered in this framework.

Additionally, with the proliferation of the skyrocketing num-
ber and types of these ends-edges-clouds computing devices,
networking equipment is placed great expectations on bridging
the gap among them. The ubiquitous access to these computing
devices and computing requirements will be supported by
wireless or wired access networks, such as WiFi, smart routers,
gateways, base stations, etc.

2) Resource Pooling Layer: In this layer, multi-level com-
puting and ubiquitous networking are abstracted and pooled,
where the pooling hypervisor is the top-drawer component.
Generally, the pooling hypervisor is responsible for perceiv-
ing physical computing and networking resources from the
infrastructure layer, while pooling and grouping the scattered
resources into computing pools and networking pools, respec-
tively. Due to the fact that the computing power is crowd-
funded from decentralized computing providers, the traceable
usage of the computing pools will be a major concern.
Meanwhile, the reliability and privacy of the networking pools
are also considered to be especially necessary for the system.

3) Scheduling Optimization Layer: Different demands
placed on the system have various requirements. The demands
are grouped into multiple classes according to their com-
puting demands, networking demands, and payment amounts
for providers. The class of computing demands involves
‘computing-intensive’ demands that require extensive comput-
ing power, ‘computing-moderate’ demands that need moderate
computing power, and ‘scavenger’ demands that are not desir-
able in the system. Similarly, the class of networking demands
include ‘fast networking’ demands that requires non-congested
networking, ‘moderate networking’ and ‘scavenger’. Since the
use of computing and networking resources in the system
is incentive-driven, i.e., pay-to-use, the class of payment
amounts can be grouped into ‘high cost’, ‘moderate cost’
and ‘scavenger’. For a comprehensive perspective, the whole
classes of services are summarised in Table I.

The classified demands will be processed by scheduling
optimization algorithms [11], [12], such as reinforcement
learning (RL), auction mechanism, convex optimization, etc.
The optimized decisions will be made in this layer, while the
optimization objectives are to achieve the adaptability for AI



IEEE NETWORK MAGAZINE, VOL. **, NO. **, MONTH ** 3

Computing-networking allocation
optimization 

Ends Clouds

Wireless 
Access 

Networks

Computing-networking pools

Networking
pool

Reliability 
privacy

API

AI Services Layer 

Face Recognition

Application services

Intelligent Manufacturing

Trajectory Identification

Blockchain Layer

Power Control

Data Monitoring

API API

System services

Traceability
Computing

pool

Multi-level 
computing power

Reinforcement
learning

Scheduling optimization
algorithms

Adaptability for computing-power users 

Flexibility for networking

Profitability for computing-power providers 

Demands

The Computing 
demands class

The Payment
amount class 

The Networking 
demands class

Resource Pooling Layer

Scheduling Optimization Layer

AI Executive Layer

Infrastructure Layer

API API

Transportation Control

Auction 
mechanism

Intelligent 
monitors

Intelligent 
terminals

Intelligent
sensors

Traffic
lights

Atlas 300
AI executor

Edges

Atlas 800
smart station

Smart
gateway

MEC Base
station

Cloud
Ends

Edge

Ubiquitous
networking

Internet

UE

Macro

Micro BS

Core networks 

D2D

Macro BS Micro

Pooling 
hypervisor

Convex 
optimization

The library of neural networks

BPN RNN CNN

The library of learning platforms

Transport 
Networks

Mobile Blockchain

IoT devices

Computing-power
providers

（1）Trainer

AI Services

…

（2）Miner

Learning Result

PoL
Puzzle

StrategyStrategy

Multiplexed NNs

Adaptability

Profitability

Flexibility

Networking

Fig. 1: The Net-in-AI framework.

TABLE I: The classes of service

Classes Items

The class of
computing demands

Computing-intensive
Computing-moderate

Scavenger

The class of
networking demands

Fast networking
Moderate networking

Scavenger

The class of
payment amounts

High cost
Moderate cost

Scavenger

computing-power users, the flexibility for networking, and the
profitability for AI computing-power providers.

4) AI Executive Layer: In order to efficiently accomplish
the AI services, the framework could realize the optional and
pluggable NNs, as well the learning executive platforms in this
layer. According to AI services’ requirements, the framework
selects the proper NNs, such as text recognition using back
propagation networks (BPNs), sequential voice recognition
using recurrent neural networks (RNNs), and image recogni-

tion using convolution neural networks (CNNs). Furthermore,
a multitude of learning platforms are available in this layer,
including Tensorflow, Caffe, PyTorch, Theano, CNTK and so
on. With the allocated computing-networking resource from
the below three layers, the proper NNs, and the learning
executive platform, the AI services will be carried out in this
layer.

5) Blockchain layer: Currently, the heterogeneous, decen-
tralized and crowd-funded AI computing power from ends-
edges-clouds is utilized by users in an uncompensated manner.
Therefore, a trusted platform is required to support the reliable
management and assure the service credibility for autonomous
members in computing-power networking [7]. The framework
that integrates blockchain and multi-level networking in AI
computing-power pool enables the incentive and intelligent
computing-networking amalgamation. Therefore, we introduce
the blockchain layer, featuring security, transparency, and
decentralization, as a valid solution to impart credibility among
network members in a tamper-proof and traceable manner.

Specifically, the resources-constrained users can request
computing power from the providers to run mobile blockchain
applications and support diversiform intelligent tasks sustained
by NNs. Actually, the NNs referred in tasks are multiplexed.
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Fig. 2: The workflow of executing an AI task in the Net-in-AI
framework

On the one hand, we substitute PoL for cryptography puzzle
to overcome the huge waste of computing power, wherein the
mining process of PoL is to work out a computational NNs
training puzzle. Therefore, a portion of NNs could be regarded
as the learning-based training puzzle for miners to compete
rewards from blockchain. On the other hand, NNs could be
taken as the underlying support for trainers to execute the deep
learning algorithms. As such, the NNs in computing-power
networking aided by blockchain could be recycled, which
provides the powerful support for the sustainable development
of computing-networking amalgamation. We will cover the
above task model detailedly in the section III-B. Furthermore,
in the computing-power transaction process, all the network
members are concerned with satisfying their own demands,
while the incorporation of blockchain into the computing-
networking systems will be of great advantage. In general, the
blockchain is conducive to access to optimal strategies and
obtain the maximum expected benefits for all parties in the
Net-in-AI. Meanwhile, the computing-networking amalgama-
tion is of great importance for the blockchain on account of
its abundant computing and networking supplement.

6) AI Service Layer: As shown in Fig. 1, AI services could
be divided into two portions. The application services may
include face recognition, intelligent manufacturing, trajectory
identification, transportation control, etc. On the other hand,
system services provide system monitoring and control capa-
bilities, such as power control and data monitoring.

B. Use Cases

Short video platforms, like YouTube, are springing up,
which causes increasing amounts of AI tasks, such as object
recognition, target tracking, etc. Action recognition is regarded
as one tough task in massive data annotation. We set this AI
task as an example to show the workflow of the proposed
framework.

As shown in Fig. 2, when a user issues an AI service
request, the Net-in-AI framework perceives the type of AI
task, such as action recognition of a video. The NNs and the
learning platforms are then selected in the AI executive layer,
ready to match the demand of the AI task. After that, the
scheduling optimization layer classifies the requirements of

computing, networking, and payment, as shown in Table II,
and then deploys the optimization algorithm for scheduling
computing and networking resource in the resource pooling
layer. Afterwards, the multi-level AI computing power and
ubiquitous networking resources are allocated to the comput-
ing nodes in the infrastructure layer to execute the specific AI
task. Finally, the computing-power networking accomplishes
the AI task execution. Additionally, the infrastructures also
solve the puzzles in the blockchain layer. The intrinsic features
of the blockchain layer, such as incentive, traceability, and
credibility, could encourage more facilities to join in the Net-
in-AI framework, and keep the framework running in a reliable
and efficient manner.

III. PROBLEM FORMULATION

This section describes the integrated computing-networking
system and formulates the AI computing resources manage-
ment problem, while developing an efficient AI Computing-
Power Allocation Mechanism for Net-in-AI with heteroge-
neous resources and multiple demands.

A. System Descriptions

Net-in-AI is a framework, which forms the computing-
power into a network. Moreover, it’s committed to sharing the
AI computing power by flexibly supporting network services,
helping computing resources providers to gain profit while
dynamically adapting to the multifarious customization needs
of users. As shown in the bottom layer of Fig. 1, we consider
a set of mobile devices, denoted as i ∈ N = {1, 2, . . . , n},
locate in the vicinity of their corresponding wireless access
points connected to the edge nodes. The access points are
connected to each other via wired links that also provide
access to the cloud servers. The computing nodes, recorded as
j ∈ M = {1, 2, . . . ,m}, share the computing power by Net-
in-AI to perform the multifarious task l ∈ K = {1, 2, . . . , k}.
These diversiform infrastructures compose the resource pool
to enable computing-power networking to possess a wealth of
AI computing power. Furthermore, the above AI computing
power information and networking status would be stored
in the blockchain as the block information. Accordingly, the
Net-in-AI framework could share the computing message and
allocate befitting computing power to the requested nodes for
providing better service and support.

B. Task Model

In the Net-in-AI, we would like to establish networking in
AI computing-power pool to achieve three main factors of
the integrated AI computing-networking system, i.e., adapt-
ability, flexibility and profitability. Specifically, the networking
includes blockchain and multi-level networking, wherein the
blockchain networking is levaraged to record and trade AI
computing resources while the multi-level networking is used
to schedule and share AI computing power. Spontaneously, the
errand of the mobile devices is mainly concentrated in two
classes: AI computing power for mining and AI computing
power for service, as shown in Fig. 3.
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1) AI Computing Power for Mining: In this paper, we resort
to the PoL consensus mechanism [8], rather than the mean-
ingless cryptography puzzle. The PoL consensus mechanism,
inspired by machine learning competitions, involves three
types of actors: suppliers, trainers and validators. Specifically,
suppliers publish machine learning competitions, trainers are
in charge of training and submitting models for released tasks,
while validators evaluate the models, reach consensus, and
propose new blocks to the chain. Actually, the mining process
of PoL is to work out a computational NNs training puzzle.

2) AI Computing Power for Service: In addition to the min-
ing task, a mobile device demands intensive computation and
high energy consumption to support the intrinsic intelligent
services, such as speech recognition, face recognition, natural
language processing, and augmented reality, sustained by NNs,
RL, federated learning (FL) algorithms, etc. Certainly, these
algorithms can take advantage of the emerging training results
from the mining task as a booster of the whole AI training
process.

From the foregoing, the NNs could be multiplexed. It is
worth noting that, the training model of an AI task could
be divided and partitioned by some segmentation methods
in the horizontal partition or vertical partition manner [3].
With approaches like these, we could regard one partition as
the NNs training puzzle and consider others partitions as the
latent prop of the deep learning algorithms. That is, PoL not
only can be used to reach agreement on a single data block
among multiple computing nodes, but accelerates the training
of NNs for a better service. Moreover, the computing end
nodes would execute aforementioned multifarious tasks while
some other computing nodes having excess computing power
are idle, which causes computing-power supply contradiction.
Therefore, as shown in Fig. 3, it is indispensable to devise a
mechanism for AI computing-power dispatch and allocation.
This mechanism would, in effect, agilely invoke computing
power from the providers, i.e., cloud and edge nodes, to help
out with computation-intensive tasks of mobile devices.

C. AI Computing-Power Allocation Mechanism

The intrinsic nature of non-shared computing power at
the traditional network creates a competitive and enclosed
environment for the mobile users. Hence, we design an
AI Computing-Power Allocation Mechanism for transparency,
invigorative and shared resource allocation in the Net-in-
AI. This mechanism would optionally allocate the computing
power and adaptively define the computing resource unit price
according to distinct computing capabilities, customized AI
service demands, and networking status. More concretely, the
AI Computing-Power Allocation Mechanism is shown as Fig.
4, where AI computing power is sold by the providers and
users submit price-bids to the AI computing-power distributor
for buying a certain amount of computing power. In the distrib-
utor’s executive process, it collects a group of AI requests from
the mobile users, including submitted bids and customized
demands. Furthermore, it would allocate befitting computing
power to the solicited users and proclaim the corresponding
prices that they need to pay.

In this allocation mechanism, mobile users compete for AI
computing resources from providers to support these multiple
business requirements. Moreover, the networking should not
only render the required communications between users and
providers, but cooperatively provision computing power in the
Net-in-AI by elastic deployment. To manage the fluctuations
of user requirements in Net-in-AI while taking into consid-
eration of the available resources in the computing nodes
and networking management, the allocation mechanism should
satisfy some diversified demands from the following three
perspectives as shown in Fig. 5.

1) The Adaptability from User Perspective: Firstly, this
allocation mechanism should adaptively satisfy the various
quality-of-service (QoS) requirements from the user perspec-
tive. The QoS requirements include delay requirement, ultra-
reliable transmission, reward-preferred, safety autonomy, etc.
As some computing nodes are located in close physical prox-
imity to some users, the performance of Net-in-AI is highly
affected by the variability of user’s requirements. Moreover, it
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can be more sensitive to service migration and mining, which
may cause wastage of resources and information leakage.
As such, for the users, they want to acquire greater utility
while satisfying the diversified QoS demands through the
adaptability of computing services. In the computing-power
allocation process, the device would consume computation
time, and the cost that the user has to pay to the provider.
Meanwhile, in the blockchain environment, the first miner who
successfully obtains the solution of the PoL and reaches the
consensus would receive the mining reward. We assume that
users have quasi-linear utilities, while the user utility gained
in the Net-in-AI is given by the reward due to mining minus
the intrinsic computation time and payment for competing
resources from the providers. In this setting, the mechanism
decides how to allocate computing power to users to maximize
their average utility, while adaptively satisfying the multifold

computing services, which can be formulated as:

P1 : max Average Utility
s.t. C1

u : Timel ≤ Deadline, ∀ l

C2
u : δ ·

∑
l∈K

Securityl,j ≤ Securityj , ∀ j

C3
u :

∑
j∈M

Bidi,j ≤ Budgeti, ∀ i

(1)

where C1
u considers the task delay as one of QoS constraints. It

means that each accommodated task must be completed within
the specified deadline determined by its AI application. The
completion time Timel consists of transmission time between
computing nodes, the execution time of task and the queuing
delay before processing. Except for the delay constraint,
another QoS requirements of tasks is the security requirement
C2

u, i.e., the computing node that performs the assignments
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must be sufficiently secure and reliable, so as to meet the
specified security requirement of the allocated tasks within
the security strength of the node [13]. The binary variable
δ represents whether the task is selected to be distributed to
the computing node. Beyond that, constraint C3

u ensures that
the total bids submitted by the user i to the provider j could
not exceed the available budget of the user. Therefore, the
proposed mechanism can provide users with the adaptability
in computing services, and further receive fairly good utility.

2) The Flexibility from Networking Perspective: Infras-
tructures of AI networks are going through a radical shift from
the network infrastructure with information transmission to an
intelligent infrastructure integrating perception, transmission,
storage, computation and processing, which brings forward
greater flexibility requirements for networking management
[14]. More specifically, the Net-in-AI framework renders net-
working of diverse services with the flexibility to capture
the business demands of users, and set up dynamically on-
demand connections across the network between data and
services. The networking in Net-in-AI also refers the tasks
could be flexibly offloaded to the most appropriate comput-
ing nodes, so as to achieve rapid responses. Although the
proposed framework enables convenient access to the ample
heterogeneous pools of computing resources, migrating the
computation intensive tasks from end devices to the computing
nodes could induce network congestion and irrational use of
the computing sources. It may further incur long network
delay and low resource utilization. We then introduce the
network congestion index that is defined as the ratio between
network waiting time and resource utilization. Therefore, from
the networking perspective, we aim to minimize the network
congestion index to relieve pressure on networking and offer
flexibility in networking service, which can be described by:

P2 : min Network Congestion Index
s.t. C1

n : Timel ≤ Deadline, ∀ l
C2

n : Average Utilityi ≥ 0, ∀ i

C3
n : Welfarej ≥ 0, ∀ j

(2)

where the constraints include the delay requirement C1
n and

the quantitative index restraints from the user and provider,
e.g. C2

n, C
3
n. Hence, from the perspective of networking,

the computing-power allocation mechanism could lessen the
amount of information that flows in the network, while flexibly
providing native physical and virtual mobility for supporting
mobile AI applications in a cost-efficient manner.

3) The Profitability from Provider Perspective: An effec-
tive incentive mechanism based on profitability should enable
the provider to obtain the maximum benefit, while stimulate
more providers to participate in the Net-in-AI. Actually, the
mobile devices will compete for computing power derived
from different types of computing-power providers in the
resource-constrained mobile environment. Specifically, user i
requests a bundle of AI computing-power units and submits
a bid for mining or service. The requests collected from the
users are submitted to the computing-power distributor that
determines the allocation of computing power to devices and
the prices the devices have to pay the providers. From the

provider’s perspective, the service computing nodes that pro-
vide the computing-power units consist of a set of computing
and communications facilities that consume electric power to
perform the tasks. Meanwhile, they would gain the revenue
due to serving the user demands. Assume the provider who
furnishes computing power to users does not attend the mining
task. Then, the provider welfare gained in the computing-
power networking is given by the payment from users minus
the electricity cost of executing the tasks. In this setting,
the allocation mechanism decides how to allocate the AI
computing power to users to maximize the computing-power
provider welfare, which can be calculated by:

P3 : max Welfare

s.t. C1
p :

∑
i∈N

Capacityi,j ≤ Capacityj , ∀ j

C2
p : Paymenti,j ≤ Bidi,j, ∀ i, j

(3)

where the constraint C1
p ensures the total allocated capacity,

e.g., computing power, to the user i from the provider j could
not exceed the available capacity of the provider. The second
constraint ensures that the submitted bids from the user i to
the provider j is no less than the corresponding payment.
Thereby, from the perspective of provider, this computing-
power allocation mechanism could motivate more providers
participate in the Net-in-AI and maximize the profitability of
the computing-networking system.

Responding to the ever-increasing computing-power de-
mands from AI applications, we establish the computing
sharing problems of three perspectives from user, networking
and provider for the blockchain-assisted Net-in-AI framework.
These three problems are closely related with and interacted
on each other. In our model, the Average Utility and Welfare
are negatively correlated with the Network Congestion Index,
which makes it possible for one of adaptability or profitability
and flexibility to be simultaneously satisfied. Furthermore, the
optimization problems between user perspective and provider
perspective could be regarded as a two stages Stackelberg
game, and the Nash equilibrium exists in this strategic game
[15]. As such, the computing-power networking can syn-
chronously possess the adaptability, flexibility and profitability
and meet the needs of the network members. By addressing
the above problems, the computing-networking system enables
the computing functions into a novel networking system,
which mainly assists in the deployment and management of
computing resources. Additionally, it can also empower users
to nearby access the network and realize the load balancing of
services, while helping massive applications and massive com-
putational resources form an open ecosystem. Furthermore, in
this considered framework, the potential incentive mechanism
would motivate more members to join the computing-power
networking to further acquire the interests, thereby achieving
multi-win.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present an extensive experimental anal-
ysis to evaluate the performance of the Net-in-AI framework
with respect to the three metrics defined in Section III.
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A. Experiment Settings

In our example scenario, disparate AI computing resources
come from the end devices that possess low computing ca-
pabilities, and eight geographically distributed edge nodes
and one cloud having abundant AI computing-power units.
To investigate the capabilities of the Net-in-AI framework
for computation power allocation, we suppose the WLAN
bandwidth w1 = 200 Mbits/s, WAN bandwidth w2 = 30
Mbits/s. The computing power of the cloud node is set as
fc = 2 × 106 MIPS, while the computing power of the edge
node is set as ff = 8 × 105 MIPS and the computing power
of the mobile device is fd = 2× 104 MIPS. This paper aims
at making computing-power networking achieve the adapt-
ability, flexibility and profitability objectives simultaneously.
Particularly, we employ the Greedy algorithm to address the
optimization problems based on P1 and P3 and leverage the
simulated annealing (SA) algorithm to solve the optimization
problem P2.

B. Performance Analysis

To elucidate the performance of the proposed framework,
experiments on computing-power allocation mechanism are
carried out under the following three perspectives.

1) User Perspective: In our proposal, the tasks of comput-
ing nodes include service and mining. Indeed, it is important
to consider the proportion of computing power for service on
users’ utility. As shown in Fig. 6(a), for the user i ∈ [15 : 120],
the utility of user is negative without mining. Simultaneously,
the expected utility for most users who performed mining
has the potential for the greatest volatility. For the users
i ∈ [15 : 45], the average utility would be better when they
resolve to employ 20% computing power for service due to the
fact that mining might fetch more rewards. Nevertheless, the
average utility may result in poor performance for large-scale
users in the same ratio. That is because concentrating most
of the resources on mining results in a high risk of revenue
loss. When more users join computing-power networking to
compete for computing resources, the probability that a user
successfully solves the PoL puzzle and reaps the reward
would be decreased. The successful miners would get more
rewards, while the aborted miners would suffer worse returns
than users dedicated to service on account of the waste of
computing power in mining. Therefore, in the case of a large
user population, the more computing power is used for service,
the better the average utility. Meanwhile, with the increase of
the mobile consumers, the users’ average utility is reduced
owing to the lower computing power of these users.

2) Network Perspective: Fig. 6(b) compares the average
congestion index in different computing-power scheduling
schemes. From Fig. 6(b), we can see that there is a modest
gap between the three schemes when the user number is
between 15 and 60. That, the result goes, is because the
small-scale data transmission task will not give rise to serious
network congestion. With an increasing number of users, the
average congestion index of each of the different schemes
shows an upward tendency. It is clear that our proposed
framework yields the better performance compared to the
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other schemes, especially with a large number of users. This
because the networking scheme prefers to perform tasks in
a cooperative and flexible manner, and the Net-in-AI could
schedule the computing power of the computing nodes op-
timally. This causes the average waiting delays to diminish
while the resource utilization increases on account of the
computing convenience of devices, resulting in a lower average
congestion index.

3) Provider Perspective: Aforementioned experiments an-
alyzes performance metrics from the perspective of users and
networking. Here, we examine the impact of distinct price
mechanisms on the welfare of the providers. In Fig. 6(c),
the Price Priority Mechanism signifies that each user bids
some amount of money for the AI computing power, with
a higher each user bid yielding computing power. In our allo-
cation mechanism, the computing-power distributor declares a
computing-power unit price to each user, then the users decide
the bids in line with their demands. From Fig. 6(c), it can
be observed that the provider welfare obtained by adopting
the proposed mechanism is always higher than that under
the Price Priority Mechanism. Moreover, the provider welfare
degrades when it possesses abundant computing power. This
is due to the fact that the submitted prices, i.e., the bids of
users, are inversely proportional to the computing capacity of
providers. Specifically, as computing power grows, the intense
competition for it will ease, which engenders the unit price of
computing power falls off, leading to further decrease in the
welfare of the provider.

V. CONCLUSIONS AND FUTURE WORK

In this article, we have presented the Net-in-AI frame-
work of computing-power networking for ubiquitous AI,
aided by blockchain. We have shown the potential bene-
fits of this framework in adaptability for computing-power
users, the flexibility for networking, and the profitability
for computing-power providers. We have formulated the
computing-networking allocation problems, with the joint con-
sideration of these three aspects. Experimental results have
confirmed the effectiveness of Net-in-AI.

Research on integrated computing-networking system is still
in its infancy, and there are still some unexplored problems.
For instance, a dynamically changing networking environ-
ment seriously affects the quantitative indexes of members in
the computing-networking system. Therefore, a more general
quantitative indexes of members need to be further defined.
Moreover, the security issues of computing-networking sys-
tem may exist. Tight interoperation between blockchain and
computing-power networking is an interesting topic as well.
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