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Abstract—Unmanned aerial vehicles (UAVs) have recently
attracted both academia and industry representatives due to
their utilization in tremendous emerging applications. Most UAV
applications adopt visual line of sight (VLOS) due to ongoing
regulations. There is a consensus between industry for extending
UAVs’ commercial operations to cover the urban and popu-
lated area-controlled airspace beyond VLOS (BVLOS). There
is ongoing regulation for enabling BVLOS UAV management.
Regrettably, this comes with unavoidable challenges related to
UAVs’ autonomy for detecting and avoiding static and mobile
objects. An intelligent component should either be deployed
onboard the UAV or at a multiaccess-edge computing (MEC)
that can read the gathered data from different UAV’s sensors,
process them, and then make the right decision to detect and
avoid the physical collision. The sensing data should be collected
using various sensors but not limited to Lidar, depth cam-
era, video, or ultrasonic. This article proposes probabilistic and
deep-reinforcement-learning (DRL)-based algorithms for avoid-
ing collisions while saving energy consumption. The proposed
algorithms can be either run on top of the UAV or at the MEC
according to the UAV capacity and the task overhead. We have
designed and developed our algorithms to work for any envi-
ronment without a need for any prior knowledge. The proposed
solutions have been evaluated in a harsh environment that con-
sists of many UAVs moving randomly in a small area without
any correlation. The obtained results demonstrated the efficiency
of these solutions for avoiding the collision while saving energy
consumption in familiar and unfamiliar environments.

Index Terms—Collision avoidance, deep reinforcement learn-
ing, machine learning, multiaccess-edge computing (MEC),
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), commonly rec-
ognized as drones, are small, fast, and mobile
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cyber–physical entities employed in different industrial ver-
ticals, including power supply inspection, parcel and package
delivery, disaster management, and traffic monitoring [1]. The
utilization of UAVs goes beyond industrial and academic pur-
poses to daily personal use. A UAV operator must always
be capable of maintaining the visual line of sight (VLOS) of
its UAV that is piloting due to ongoing regulations, unaided
by any technology other than prescription glasses or contact
lenses. While UAVs are used mostly within VLOS, there is
enthusiasm toward their utilization beyond VLOS (BVLOS) to
enable new emerging applications. Therefore, there is a con-
sensus between industry for attenuation of the regulation by
extending UAVs’ commercial operations to cover the urban
and populated area controlled airspace BVLOS. The latter
will be enabled by leveraging a cellular wireless network. 5G
system and beyond considers the UAV management BVLOS
as one of the essential demonstrators. On the other side,
emerging networking paradigms, such as Edge Computing
can substitute UAVs to handle high processing flight control
applications. Furthermore, GPU vendors allow for realizing
different microarchitectures (e.g., Fermi, Maxwell, and Pascal)
that might enable real-time and high resourced applications for
the UAV’s flight control [2].

The UAVs’ commercial revenue sees considerable growth by
the near future [3].The expected increase in the number of UAVs
involves new challenges related to their control and management.
Efficient solutions for UAV’s collision avoidance is one of the
challenges that have been widely tackled in the literature in
both ground vehicles [4], [5] context, as well as in the context
of UAVs [3], [6]–[24]. Different sensors have been leveraged
for scanning and detecting objects surroundings UAVs. Some
solutions use cameras for detecting mobile and static obstacles
around UAVs [6], [14]. Nevertheless, the information provided
by video cameras requires intensive processing to be translated
into useful information to control UAVs [25].

Several works [3], [11], [17], [18] have proposed path plan-
ning solutions where the UAVs are provided with their whole
trajectories before starting their missions to overcome the
limitation mentioned above. The path planning fits well in
applications with invariable environment scenarios. However,
mostly, UAVs fly in unsettled indoor, urban, and confined
areas. Indeed, sensing and path planning approaches’ suc-
cess is highly related to the computational capacity of the
UAV, the accuracy of the sensor, and the knowledge’s degree
on the environment. On another side, reinforcement-learning
(RL)-based approaches got much success in emerging top-
ics, including robotic prediction, vehicular ad hoc networks
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(VANET), and UAVs. For instance, Xiao et al. [26] have
provided a heuristic to enhance communication and prevent
jamming attacks in VANET by leveraging UAV. An extended
version of this work has been suggested in [27] to prevent
the jamming attacks in VANET by leveraging both UAV and
RL approaches. This success attracted the researchers to use
RL to ensure a self-decision-making system for a safe UAV’s
autonomous flight.

RL consists in providing a kind of knowledge on the envi-
ronment based on the previous UAV’s experiences. Thus, RL
builds the knowledge by interacting with the environment
based on a Markov decision process (MDP) model and follow-
ing one of the RL methods (e.g., Q_learning, deep Q-networks
(DQN), Policy_gradient, or Actor_critic). The RL-based UAVs
control solutions proposed so far [19]–[24] need large data
sets that referrer to the abstraction level used to model the
RL environment system (e.g., velocity, wind velocity, etc.).
The data sets used in RL-based solutions might return the
same limitations pointed in the classical approaches stated
above [19]. To overcome these limitations, this article suggests
two strategies for avoiding the collision in a UAV environ-
ment. The first solution, named a probability-distribution-
based collision-avoidance framework (PICA), leverages the
probabilistic model for avoiding collisions. In contrast, the
second solution, dubbed-RL-based collision-avoidance frame-
work (RELIANCE), leverages DQNs for avoiding collisions.

To deal with the disparate UAVs processing capacities and
to ease the deployment of the proposed solutions, we suggest
two deployment approaches: 1) the UAV’s flight controller is
deployed onboard or 2) at the multiaccess edge computing
(MEC). The first approach convenes UAVs with the new GPU
microarchitecture technology is where the agent, either of
RELIANCE or PICA, can smoothly make decision and select
the best actions. On the other hand, the second way assembles
UAVs with limited computing capacities. In order to ensure close
management, services running should be migrated among MECs
using Follow Me Edge-Cloud concept. Bekkouche et al. [28]
suggested a MEC architecture that ensures UAVs’ resource
provisioning. In case the UAV has a limited resource capacity,
the same architecture as proposed in [28] can be adopted. In this
case, the RELIANCE/PICA agent is responsible for making
decisions at the MEC, and then sending the respective actions
to the UAV for controlling its motion.

Both algorithms aim to enable autonomous decision making
for a UAV while a safe and short flight is ensured to save energy
consumption. To ensure a fast convergence of RELIANCE and
PICA, we have used a detail-less and generalized state by
focusing on the closest part of the environment to the agent.
In RELIANCE states’ design, we have leveraged partially
observable MDP (POMDP) to ensure the generalization and
fast convergence. We have used a partially observable state that
focuses only on the UAV surrounding to avoid the collisions
instead of the whole deployment area. The limitation of the
observation at the UAV vicinity helps to reduce the state space
by aggregating many observations to a single state. Thanks to
this strategy, RELIANCE and PICA avoid overloading com-
putation processing by ignoring useless knowledge. Moreover,
this strategy helps the RELIANCE solution to converge quickly

by treating many observations as the same state. Furthermore,
to ensure the generalization and that both algorithms can work
in unseen environments, we have used relative target positions.
The benefits of this strategy are twofold: it facilitates and
speeds up the convergence of the neural networks (NNs) and,
most importantly, improves the generalization of the agent,
which is agnostic to the scenario scale. We have evaluated and
compared both algorithms in terms of collision avoidance and
energy saving in familiar and unfamiliar environments. The
obtained results demonstrate the ability of both algorithms in
the generalization by performing well in unknown environ-
ments. Also, the simulation results clearly show the superiority
of RELIANCE comparing to PICA.

The remainder of this article is organized as follows.
Section II reviews the related works. Section III includes
our system model and problem statement. In Section IV, the
PICA solution is described. An overview on DQN and a
RELIANCE solution are detailed in Section V. Section VI
presents and discusses the simulation results of PICA and
RELIANCE evaluations. Finally, the primary conclusion is
drawn in Section VII.

II. RELATED WORK

There is a vast literature to address the collision-avoidance
problem in the context of both unmanned ground vehi-
cles [4], [5] and UAVs [3], [6]–[24].

Most of the solutions rely on exact methods [3], [6]–[18],
i.e., analytical modeling and optimization techniques, to tackle
the UAVs collision-avoidance problem (UCAP). The existing
works, based on exact methods, usually considers part of the
UCAP aspects to handle its modeling and computational com-
plexity. However, in order to provide a realistic and practical
model of the UCAP, many issues have to be taken into account.

1) Obstacle Detection: In order to detect the static and
mobile objects, the UAVs need to be equipped with
onboard sensors. The number of these sensors and their
precision might be affected and limited due to sev-
eral external factors, e.g., specific scenario and UAVs’
autonomy. For instance, GPS might not work for indoor
scenarios like Industry. Other sensors like radars [8]
might be too heavy, energy consuming, and expensive.
Then, the concrete set of onboard sensors in UAVs
depends on the application and scenario.

2) Sensor Errors: Onboard sensors to detect objects are
not error-free. All of them have precision errors, which
might be affected by external conditions. For instance,
GPS error is affected by weather conditions and follows
a Gaussian distribution [3], [29].

3) Complex Control: There are several variables to control
the UAVs movement, e.g., direction, velocity, and accel-
eration. Furthermore, these variables strongly depend on
external factors, such as wind velocity.

4) Different Approaches: There are two different
approaches to solve UCAP, namely, path planning
and sensing and avoiding [25] methods. Path plan-
ning solutions compute the trajectories of the UAVs
offline, whereas sensing and avoiding (online) methods
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determine the movement of the UAVs for small time
steps depending on the environment conditions. Sensing
and avoiding methods offer higher flexibility and are
suitable for a wider range of scenarios. Path planning
fits well only for scenarios where the environment
remains relatively static during the whole UAVs’
mission. The main drawback of the online methods is
that typically, the UAV has to run the algorithm (e.g.,
due to latency constraints), which might exhibit high
computational complexity and consume energy.

In the light of the above, the UCAP requires a high-
domain knowledge and its modeling leads to complex or even
intractable optimization programs. To overcome these prob-
lems, machine learning techniques are particularly attractive
for addressing UCAP, so they have been recently received a
lot of attention by the research community [19]–[24].

Choi and Cha [19] provided a comprehensive survey of
ML-assisted solutions for autonomous flight. Specifically, they
focus on object recognition and UAV’s control strategy. The
authors conclude that ML is a promising approach to enable
stable flight under uncertain environments, though there are
still some open issues that need to be carefully addressed.
Among them, the existing works do not apply ML in all the
UCAP’s issues together for autonomous flight. Then, holistic
solutions, which cover most of the real-world problems and
are suitable for a wider spectrum of scenarios, are required.
Furthermore, the existing solutions need large data sets for
training. In this regard, they encourage new less data-hungry
proposals with a more lightweight training. Finally, they moti-
vate the need for real world tests for a stronger validation of the
ML-based UAVs control strategy. Similarly, Fraga-Lamas et al.
overview the latest advances on IoT UAV systems controlled
by deep learning techniques. They analyze the object detec-
tion and collision-avoidance problems and present a survey
on the state of the art of deep learning techniques to solve
them. Also, they detail the most relevant existing data sets
and UAVs’ communication architectures. Finally, they identify
the open challenges for UCAP. Interestingly, they extract some
similar conclusions to the ones drawn in [19]. For instance, the
necessity for large amount of data to generate robust models
and the difficulty to produce those data.

In this article, we propose a simple, yet powerful deep
RL (DRL) and probability-distribution-based solutions. Our
proposals are suitable for many scenarios, while they need
reduced data sets to converge and produce robust models.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this article, we aim to control the movement of a UAV,
hereinafter referred to as UoI (UAV of Interest), while avoiding
the collisions with static and mobile objects. Table I summa-
rizes the different notations used in the paper. UoI needs to
move within a confined area of dimension X × Y while avoid-
ing the collisions. The UoI motion begins from a predefined
initial position PS = (xS, yS) and stops once achieves a
predefined targeted destination PT = (xT , yT). Let A denote
the possible action directions of UoI. As mentioned in [28],
the possible movement of a UAV is limited and related to the

Fig. 1. System model of collision avoidance in the UAV environment.

TABLE I
SUMMARY NOTATIONS

environment that it works in. For the sake of simplicity and
without loss of generality, we consider A has eight possible
directions, A = {Up, Down, Right, Left, Up_right, Up_left,
Down_right, Down_left}, as depicted in Fig. 1. For simplic-
ity, we assume a constant velocity and altitude for the UoI.
Furthermore, we consider that UoI operates autonomously
without either any remote ground control or predefined way-
points plan. On another side, we consider that the 2-D flying
area can include either static (e.g., buildings) and mobile (e.g.,
birds and other UAVs) obstacles. Therefore, the UoI has to
be equipped with an accurate sensor (e.g., Lidar) to precisely
detect the surrounding objects’ positions. Other ultrasonic-
based, video-based, and radio-based techniques for detecting
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obstacles and mobile objects have been investigated in [30]
and [31]. Hereafter, we refer to the static and mobile objects as
static_intruders and mobile_intruders, respectively. We define
I as the set of intruders, where I = {{static_intruder} ⋃

{mobile_intruder}}.
The UoI might collide with one of the mobile and static

obstacles. We assume an arbitrary trajectory for the mobile
intruders, which is unknown by the UoI. A collision occurs
whenever the Euclidean distance between the UoI and any
intruders is lower than a predefined threshold distance ε. The
safety distance ε varies from few centimeters to few meters
according to different parameters related to the environment
and used sensors. The distance ε can vary according to the
sensor technology used to measure the distances, such as Lidar,
depth camera, video, or ultrasonic. Also, the accuracy of the
same type of sensors can vary from a manufacturer to another.
The UoI can detect this collision by harnessing its onboard
sensors at any time t. Let Pu(t) = (xu(t), yu(t)) and Pj(t) =
(xj(t), yj(t)) denote the position of the UoI and the position of
the intruder j at a given instant t, respectively. Then, a collision
instance is formally defined as follows:

Collision =
{

1, if ∃ j ∈ I where δ
j
u ≤ ε

0, otherwise
(1)

where

δj
u =

√
(
xu(t)− xj(t)

)2 + (
yu(t)− yj(t)

)2
. (2)

In this article, we also take into consideration the limi-
tation on the battery capacity of the UoI. To that end, the
ultimate goal of the algorithm in charge of controlling the UoI
movement is to achieve the target PT following the shortest
path while avoiding collisions with mobile and static objects.
The shortest path minimizes the distance traveled by the UoI,
thus contributing to energy saving.

IV. PROBABILITY-DISTRIBUTION-BASED

COLLISION-AVOIDANCE FRAMEWORK

In this section, we propose a heuristic, dubbed PICA, to
control the movement of the UoI to reach a target position
while avoiding collisions. It considers the mission time, i.e.,
the time from the UoI starts its mission until it reaches its
target PT , is slotted. At each time step t, the UoI collects data
from different sensors to sense the objects’ presence in its
vicinity. As depicted in Fig. 2, UoI is aware of the surrounding
objects in a circular area zi, whose extension is limited by the
sensors’ ranges. Specifically, the circular area zi has a radius
ρ. The state of the circular area zi, i.e., the spatial distribution
of the intruders within it, is updated at every time step after
the UoI changes its position according to an action a ∈ A
taken by PICA. Let Z denote the set of circular shaped areas
zi, where Z = {zi : ∀i ∈ A}.

Inside every zi it might exist intruders neighboring every
zi’s center i. Let η(i) denote the set of static_intruders
and mobile_intruders inside the area zi. We denote by δ

j
i the

Euclidean distance between jth intruder belonging η(i) and the
position of i. The distance between each intruder and the center
of zi can be computed by PICA using the triangulation method.

Fig. 2. PICA: zone concept for selecting directions.

The density distribution of the intruders inside zi could refer
to the likelihood of a collision if the UoI moves to position i.
In other words, the denser zi, the higher the probability that
the UoI experiences a collision. Let us define P(zi) as the
probability of collision inside zi, formally defined as follows.

P(zi) =
∑
∀j∈η(i) pj

i
∑

i
∑
∀j∈η(i) pj

i

∀i ∈ {1, 2, . . . , |A|} (3)

where

pj
i = 1− δ

j
i

ρ
(4)

where pj
i represents the likelihood that UoI collides with j if

action i ∈ A is chosen. Formally, the closer j is to UoI, the
higher the probability of collision. Note that the value of δ

j
i/ρ

is within the interval [0, 1]. In order to avoid the collision, the
position with the lower P(zi) should be chosen.

In addition to the safety factor, PICA aims to go through
the shortest path by seeking at each time step t the direction
that brings the UoI closest to the target. To achieve this goal,
PICA measures the remaining distance to the target from every
i. Indeed, to decide the UoI’s next direction, PICA ranks every
Zi’s center, i, using the following equation:

Ri = θP(zi)+ (1− θ)
δ

PT
i√

X2 + Y2
(5)

where θ ∈ [0, 1] is a parameter used to favor either safety or
energy. δ

PT
i denotes the distance between the current position

and the target. The concept of application integrating the UoI
has an immediate impact on selecting either θ or its comple-
ment (1− θ ). In our case, we give more priority to the safety
of the UoI agent. For this reason, we have selected higher
values of θ . Furthermore, δ

PT
i refers to the Euclidean distance

between the Zi’s center and the targeted point PT . Since the
unity of both the probabilities and the distances values are
in different scales. To prevent distance domination, we have
normalized the value of δ

PT
i to be between 0 and 1 by diving

it by the maximum possible distance
√

X2 + Y2. Indeed, the
UoI will choose to move in the direction a that has the lowest
rank using the following formula:

a = arg min
i∈A
{Ri}. (6)
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Fig. 3. PICA descriptive example. (a) UAV UoI at instant (t). (b) Density distribution of the intruders inside each zone. (c) Remaining distance to the target
from the center of each zone. (d) UAV UoI at instant (t + 1).

Fig. 3 illustrates the PICA functionality, which is detailed
in Algorithm 1. For simplicity, in this example, we con-
sider that UoI can move only on four directions {Up, Down,
Left, and Right} corresponding to the positions {1, 2, 3, 4},
respectively. We also consider that all the distances δ

j
i are

the same and equal to δ. Hereafter, based on the density of
intruders in each zone, PICA computes the probability of col-
lisions P(zi) for every zi (Algorithm 1: line 10) using (3)
and (4). For example, the probability of collision P(z2) at
zone 2 is the summation of the probabilities that UoI col-
lides at Zi’s center 2 with every j ∈ η(2). Indeed, as shown in
Fig. 3(b), P(z2) = [(

∑
∀j∈η(2) pj

2)/(
∑
∀i∈{1,...,4}

∑
∀j∈η(i) pj

i)],
where p1

2 = p2
2 = p3

2 = p4
2 = (1−[δ/ρ]). In this case, the prob-

ability collision distribution of the positions 1, 2, 3, and 4 is
1/9, 4/9, 2/9, and 2/9, respectively. As depicted in Fig. 3(b),
the zone 2 is the most dense in term of intruders compared to
the other ones. In contrast, zone 1 is the less dense since it con-
tains only one intruder with probability collision 1/9. To rank
the candidates’ directions i ∈ {1, . . . , 4} of PICA, based on (5)
and (6), it chooses the best action that has the lowest proba-
bility collision and the lowest remaining distance to the target
(Algorithm 1: lines 12 and 15). Following the same example
and as shown in Fig. 3(b) and (c), the candidate direction (1)
has the smallest rank since it has the lowest probability and the
lowest missing distance to the target (Algorithm 1: line 15).
Finally, at the time step (t+1), the UoI moves into the position
(1) as depicted in Fig. 3(d).

V. RELIANCE: REINFORCEMENT-LEARNING-BASED

COLLISION-AVOIDANCE SOLUTION

In this section, we provide an RL-based solution for avoid-
ing the collision. In contrast to the model-based approach,
MDP, which requires full knowledge about the environment
(i.e., transition probabilities), RL does not require any prior
knowledge. This makes RL a more suitable framework for
dealing with unsuspected and uncorrelated mobility of objects
around UoI. Thanks to sampling and bootstrapping in RL,
RELIANCE can forecast the next movement of each mobile
object and then avoid the collision. Fig. 4 depicts the main
overview of the RELIANCE solution. In this section’s bal-
ance, we will give first some background on RL, and, more
precisely, DQN employed in this article. Then, we will give a
detailed description of RELIANCE.

A. Background on RL and DQN

The RL technique has been widely used in the literature in
various applications and services, such as robotics and industry
5.0. RL’s ultimate goal is to endow vertical industry with the
ability to learn, improve, and adapt according to the environ-
ment’s changes. With the new trend toward the self-optimized
and the cognitive network, industry, and academia shifted their
attention to employing RL. An RL system mainly consists of
five elements, as depicted in Fig. 4, which are: 1) environment
E ; 2) states S; 3) agent, in our case, is the motion controller
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Algorithm 1: PICA
Input :

X:The x_axis limit of the geographical area X × Y .
Y:The y_axis limit of the geographical area X × Y .
ρ: The radius.
θ : The priority rate.
A:The set of actions.
PT :The started point of UoI in the environment.
PS:The targeted point of UoI in the environment.

Output:
done: The UoI reaches PT or collides with one of the intruders.

1 done← False;
2 while (done = False) do
3 Z← ∅;
4 R← ∅;
5 foreach (a ∈ A) do
6 z← Circle(a, ρ);
7 Z← Z ∪ z;
8 end
9 foreach (z ∈ Z) do

10 Compute P(z);

11 Compute δ
PT
i ;

12 r← θP(z)+ (1− θ̇ )
δ

PT
i√

X2+Y2
;

13 R← R ∪ r;
14 end
15 a← arg min

i∈A
{Ri};

16 UoI applies action a;
17 if (U(t) = PT or Collision) then
18 done← True;
19 end
20 end

Fig. 4. RL-based collision-avoidance system overview.

of the UoI; 4) Actions A; and 5) rewards r received after the
execution of each action a ∈ A.

While RL works either for episodic or continuous tasks, in
this work, our environment is episodic. Each episode presents
the UoI mission that starts at PS = (xS, yS) and ends either
when UoI attends its destination PT = (xT , yT) or collides
with a mobile or static obstacle. As depicted in Fig. 4, UoI
discretely interacts with the environment by taking different
actions, and then accordingly receiving an observation and
rewards that reflect the action taken. The agent UoI keeps
interacting with the environment E and receiving reward rt on
steps t ∈ {1, 2, . . . , T}. While T = ∞ for continuous tasks, it

is finite in the case of an episodic task. The objective of the
UoI agent is to increase cumulative reward Gt received after
time step t until the end of the episode

Gt
.=

T∑

k=0

γ krt+k+1 = rt+1 + γ Gt+1 (7)

such that γ ∈ [0, 1] is the discount factor and rt denotes the
immediate reward received at the instant t.

Many RL techniques have been proposed in the litera-
ture, including policy-based (e.g., REINFORCE), actor–critic
(e.g., A3C and DDPG), and value-based approaches (e.g., QN,
DQN, and DDQN). While the two formal methods aim to pro-
vide the policy that estimates the state’s action probabilities,
the latter approach estimates the state–action value. Then, this
value is used to deliver the optimal policy. Considering that
the space of actions is discrete and limited, in this work, we
opt for a value-based approach and, more precisely, DQN.
Particularly, we have chosen DQN due to the size of the
action–state space, as explained later.

The state–action value of state s ∈ S using action a ∈ A
under the policy π is defined as follows [32]:

Qπ (s, a)
.= Eπ [Gt|St = s, At = a]

← Eπ

[
T∑

k=0

γ krt+k+1|St = s, At = a

]

. (8)

The optimal action–state value Q∗(s, a) can be delivered
from Qπ (s, a) by choosing the optimal policy. Formally, Q ∗
(s, a) = maxπ Qπ (s, a) for a ∈ A and s ∈ S . Q∗(s, a) can
be also delivered using the Bellman optimality equation using
the following formula [32]:

Q∗(s, a)← E

[

rt+1 + γ max
a∈A

Q∗
(
St+1, a′

)|St = s, At = a

]

.

(9)

The basic idea behind many value-based algorithms is
sampling and bootstrapping. The sampling is leveraged for
enabling the algorithm to learn by exploring the environment,
thanks to the trial and error approach. Meanwhile, bootstrap-
ping is a technique used to estimate the state–action value in
order to speed up the algorithm convergence [32]. Q-Learning
Algorithm is one of the widely used algorithm in the literature.
The Q-learning algorithm leverages sampling and bootstrap-
ping methods to converge to the optimal policy. During the
learning step, the Q-learning algorithm updates the state value
action using the following formula:

Q(st, at)← Q(st, at)+ α

×
[

rt+1 + γ ×max
a∈A

Q(st+1, a)− Q(st, at)

]

(10)

such that α is the learning rate.
Thanks to bootstrapping, Q-learning repeatedly updates

Q(st, at) by shifting it toward the optimal value using TD error
(rt+1+γ ×maxa∈AQ(st+1, a)−Q(st, at)) and learning rate α.
This approach enables to gradually increasing Q(st, at) toward
the optimal value. The optimal policy can be delivered from
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the optimal state action using the following formula:

∀s ∈ S : π∗(s)← arg max
a

Q(s, a). (11)

In the Q-learning algorithm, the state–action value Q is
presented as a table, where the states are the lines and actions
are the columns. Unfortunately, Q learning is unfeasible for
large action–state spaces as ours. Fortunately, DQN has been
suggested to overcome that limitation [33] by creating an esti-
mator of the Q table by leveraging the NN. In fact, the Q table
is approximated with an NN with parameter ω.

Unfortunately, the basic DQN algorithm suffers from over-
estimations of action value due to using the same NN in the
update and estimation of the next Q value used to compute
the TD error. This approach creates lots of noise and makes it
hard to find the action with the maximum expected/estimated
Q-value. To prevent this issue, Mnih et al. [34] have suggested
DQN that uses two different Q NNs. The first one, called pol-
icy Q NN Qπ , is used for estimating the action. Meanwhile,
the second one, called target Q network QT , is used to gen-
erate the target action values. To mitigate the noises in the
update, while Qπ is updated at each iteration, QT is updated
from Qπ only after a specific number of episodes.

In this case, the policy π during the exploitation, either
during the training or inference modes, is generated from the
approximation Qπ (st, at, ω) NN using the following equation:

πst ← arg max
a∈A

Qπ (st, a, ω). (12)

Meanwhile, the parameter ω (bias and weights) of the esti-
mator Qπ is updated periodically during the training step using
the following formula:

ωt+1 = ωt + α ×
[
rt+1 + γ ×max

a
QT(

st+1, a;w′)

− Qπ (st, at;w)
]
×∇wQπ (st, at;w). (13)

By leveraging different gradient descent methods (e.g.,
stochastic gradient descent, RMSprop, or ADAM), the DQN
Algorithm keeps updating ω during the training step. ω is
updated from replay memory (B) that consists of transitions
observed during the exploration or exploitation. Each transi-
tion <st, at, r, st+1> consists of the current state st, the taken
action at, the immediate received reward r and the next state
st+1. To break the correlation between transitions and to allow
a stable learning curve, a batch of transitions (i.e., batch_size)
is randomly selected from the reply memory B [32].

To ensure a balance between the exploration and exploita-
tion during the training to update ω, an epsilon greedy method
is used. The algorithm keeps randomly switching between the
exploration and exploitation modes. At the end of the training,
the DQN algorithm should favor exploitation than exploration
to assist its convergence. For this purpose, an epsilon decay
strategy has been adopted by decreasing the epsilon decay ξ

parameter during the training. ξ initially starts by 1, and it
should converge to 0 at the end of the training. To switch
between the exploration and exploitation, a random number
(i.e., [0, 1]) is generated and compared to ξ . If the generated
number is lower than ξ , the exploration procedure is executed.
Otherwise, the exploitation procedure is considered.

B. RELIANCE Model Overview

The autonomous flight control system of the UoI is real-
ized as an RL agent. To model the energy-aware collision-
avoidance problem using the RL framework, as mentioned in
the previous section, the following elements need to be for-
mally defined: 1) environment; 2) state; 3) agent; 4) actions;
and 5) reward.

1) Agent: The RL agent is instantiated and run within the
UoI to control its trajectory in order to avoid collisions
while minimizing the energy consumption by taking the
shortest path until its destination.

2) Environment: Geographical are of dimensions X × Y
that include a set of mobile (e.g., other UAVs) and static
objects (e.g., walls). The agent moves within this 2-D
confined area.

3) Actions: The action space comprises a set of
eight directions, i.e., A = {Up, Down, Right, Left,
Up_right, Up_left, Down_right, Down_left}, as
previously mentioned.

4) Reward: If the agent succeeds and reaches its targeted
destination, it is positively rewarded with 100. If the
UoI experiences a collision during its trajectory to the
destination, the agent is penalized with a negative reward
of −100. Finally, in order to encourage the agent to take
the shortest path, there is a penalty of −0.1 for each step
taken by the agent until reaching its destination.

5) State: The state (agent’s observations) consists of two
parts.

a) The distance vector Prel = (xrel, yrel) is defined as
the vector from the current UoI’s position (xC, yC)

to the UoI’s destination (xT , yT). That is

xrel = xT − xC

X

yrel = yT − yC

Y
.

Observe that (xrel, yrel) = (0, 0) means the UoI
is at the destination. Also, note that xrel and yrel
have been normalized by X and Y (flight area
dimensions), respectively. In this way, the agent
is agnostic to the scenario scale, which makes the
solution more general, i.e., the same trained model
can be used in many environments.

b) The number of mobile and static objects distribu-
tion across a grid square centered around the UoI.
Specifically, a � = ‖L�×L�‖ grid square is con-
sidered. The UoI dimensions give the size of each
tile of the grid. The grid is formally described as
a binary matrix. Each element of this matrix indi-
cates whether there is any static or mobile object
(intruder) within the respective cell (tile) (=1) or
not (=0) (see Fig. 5). This approach enables us
to consider the UoI vicinity, which is the most
relevant to avoid collisions and reduce the state
space by aggregating many observations to a single
state. Thus, faster learning and convergence will
be perceived. As depicted in Fig. 5, thanks to the
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Fig. 5. State aggregation process adopted by RELIANCE. (a) Scenario1 with two intruders beyond the square. (b) Scenario2 with five intruders beyond the
square. (c) Scenario3 with nine intruders beyond the square. (d) Same state refers to all the previous scenarios.

aggregation method adopted by RELIANCE, dif-
ferent observations depicted in Fig. 5(a)–(c) can be
presented by the same state shown in Fig. 5(d).

It is remarkable that both components of the state con-
sidered are agnostic of the scenario, which makes the
solution more general.

C. RELIANCE Example Description

As stated previously, we provide the agent with an RL-
Algorithm that adopts one of the existing RL approaches. The
principle role of this algorithm consists of giving the agent the
ability to self-decide in which direction has to move following
the defined goals. Before starting the flight, we provide the
agent with the coordinates of its started and targeted points,
PS and PT , respectively. Thus, at each step, the agent needs
to do the following.

1) It receives the status of the area from the sensing
equipment.

2) It traces the square-shaped area surrounding the
agent where the current agent position centers the
square.

3) It ignores the area beyond the square and uses the
received sensing status to update every cell inside the
square by (1) if it contains an intruder and (0) otherwise.

4) It computes the relative address Prel of the targeted point
PT in proportion to the current position of the agent.

5) Normalize the value of the targeted point relative
position.

6) It generates the current state St where St = {Prel =
(xrel, yrel),�}.

7) It uses the prior learned knowledge to choose the best
action (direction) that might allow the agent to not
collide with any nearby intruder and get closer to its
target.

8) Apply the selected action and observe the impact of the
agent’s dynamic on the environment by recording the
new knowledge in terms of reward earned and new agent
position.

9) The agent repeats the previous steps until reaching the
targeted point PT or an instance of collision occurs.

Indeed, as shown in Fig. 5, state St introduced at each step
highly impacts the learning process and the action selection.
Thus, the state’s definition needs to be done based on clear
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and logical arguments. In what follows, we detail our logic
behind the definition of state St.

First, instead of using the 2-D coordinate of the target, the
use of the relative address allows the agent to move in the
direction of the targeted position wherever its position is in
the environment. Furthermore, the use of the relative address
allows the agent to involve the remaining distance to the target
in the learning process of the agent. Thus, we keep the agent
seeking the shortest way to move on.

On the other side, the focus on the square surrounding the
agent position instead of considering the whole environment
area aims to aggregate many environment states to one state
at the agent. Let � denote the surrounding area of the agent.
The size of the surrounding area is a hyper-parameter that
can be tuned during the training step. As shown in Fig. 5,
three different environment states can be presented by the
same state. However, they are the intruders’ position beyond
the square, and the state is the same since it considers only
the intruders positioned inside the square and the relative tar-
geted position. Indeed, the agent will know a limited number
of states. Furthermore, the nonuse of related intruders fea-
tures (e.g., intruders coordinates) aims to have a generalized
view that might be used in similar status even with different
intruders’ positions. Finally, the use of such a state might help
improve the learning convergence time of the agent. Moreover,
this approach helps to train the agent on a limited number of
intruders and can also be functional in an environment with a
high number of intruders.

D. RELIANCE DQN Algorithm

Throughout this section, we detail the RL approach used
by our based RL agent. Several RL approaches exist in the
literature, such as the Q-learning, deep neuron network (DQN),
policy gradient, and actor–critic. However, the elements state-
space and the action-space from the RL modeled system are
either deterministic or continuous, highly impacting the selec-
tion of the RL approach. In our case, eight deterministic actions
compose the action space. On the other side, the state-space
contains two deterministic elements: 1) the relative address and
2) the square-shaped area. The Q-learning approach requires
that the agent is within a deterministic limited space. Indeed,
the Q-learning approach seems to be the most suitable for our
problem. However, the size of the square-shaped area might
be considerable. Then, the agent could take a long time to
converge, and consequently, the computation process will con-
sume more resources. Furthermore, the learning process can
be less efficient by getting a useless action.

To mitigate this problem, we opted to use the DRL
(DQN) approach. Thus, more details about our based DQN
autonomous UAV collision-avoidance and energy-aware agent
are summarized in Algorithm 2. First, the agent starts by
instantiating two different NNs, named the policy network Qπ ,
and target network QT . To ensure the fast convergence of the
algorithm, we have used Xavier initialization to initialize the
weights of both NNs Qπ and QT . The Xavier initialization
helps to converge fast and prevent the exploding and vanish-
ing gradients during the training process. To give the agent

Algorithm 2: RELIANCE: RL-Based Collision-
Avoidance Solution

Input :
Qπ and QT : The initialized policy and target networks using

Xavier-uniform.
B: The batch replay memory size to size N.
batch_size: The size of each batch.
M: A number of episodes to update QT with Qπ .
ξ0: The initial value of epsilon greedy.
N : Number of episodes.

Output :
done: The UoI reaches PT or collides with one of the

intruders.
1 episode = 1;
2 while episode ≤ N do
3 done← False;

4 ξ ← ξ0
ξ0+episode ;

5 S0 = E .init();
6 while done = False do
7 St = {Prel = (xrel, yrel), �};
8 if random() ≤ ξ then
9 a← randint(A);

10 else
11 a← arg max

a∈A
Qπ (St, a);

12 end
13 St+1, reward, done← E(St, a) ;
14 B← (St, a, reward, St+1, done);
15 t← t + 1;
16 if size(B) ≥ batch_size then
17 mini_batch← random(B, batch_size);
18 foreach (Si, ai, rewardi, donei, S′i) ∈ mini_batch do
19 if (donei = True) then
20 yi ← rewardi;
21 else
22 yi ← rewardi + γ max

a′∈A
QT (S′i, a′i);

23 end
24 end
25 L = 1

N
∑i=N−1

i=0 (Qπ (Si, ai), yi)
2;

26 Update ω of Qπ using L;
27 end
28 end
29 if episode%M = 0 then
30 QT ← Qπ ;
31 end
32 episode = episode+ 1;
33 end

more time to explore the behavior of the actions set, we opted
to use the decayed ε-greedy strategy. The algorithm starts from
the first episode and ends at the last episode N (Algorithm 2:
lines 1 and 2). For each episode (Algorithm 2: lines 2–33),
RELIANCE does the next steps. Initially, the episode sets to
an undone state (Algorithm 2: line 3). Then, ξ is initialized
to enable either the exploration or exploitation (Algorithm 2:
line 4). Later, the environment is initialized by creating a new
mission to train the agent (Algorithm 2: line 5).

While the episode is not completed (UoI achieves the tar-
get or collides), we do the following steps (Algorithm 2:
lines 6− 28): first, the agent generates and normalize the cur-
rent state (Algorithm 2: line 7). Then, according to the decayed
value of ξ and a randomly generated number, we select
either exploration or exploitation (Algorithm 2: lines 8–12).
If the exploration is selected, a random action is issued from
A (Algorithm 2: lines 8–10). Otherwise, the agent of the
UoI chooses the action with the maximum reward previously
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earned using the policy network (Algorithm 2: lines 10–12).
After the agent applies the selected action and saves the tran-
sition to B (Algorithm 2: lines 13 and 14), the agent moves to
the new observed state (Algorithm 2: line 15). However, when
the number of experiences exceeds the batch_size, the agent
selects a random batch of transitions from B to update the
Qπ following TD(0) (Algorithm 2: lines 16–27). The agent
keeps updating the QT using Qπ every M steps. The agent
repeats the previous steps until the end of all the episodes in
the training.

VI. EXPERIMENTATION AND RESULTS

In this section, we evaluate the performances of our two
solutions PICA and RELIANCE. In the balance of this sec-
tion, we first present the simulation setup; then, we present
the convergence of RELIANCE during the training mode.
Last but not least, we conclude this section by evaluat-
ing the performances of RELIANCE in inference mode
to PICA.

A. Simulation Setup

Existing UAV simulators, such as Air Sim and software in
the loop (SITL), use telemetry data to control the motion of
a single UAV in a closed and well-controlled environment.
These simulators mainly focus on telemetry data to main-
tain a single UAV for landing and flying. Still, they did not
consider mobile objects, which is a handicap facing their uti-
lization to evaluate PICA and RELIANCE solutions. In order
to overcome these limitations, we have developed an OpenAI
Gym [35] compliant simulator1 with graphical rendering capa-
bility using the Python language and OpenCV library. This
simulator provides a customizable environment that considers
both static (e.g., building) and dynamic (e.g., UAVs and birds)
obstacles. The static obstacles can be included in a JSON
format to the simulator. In the simulator, we have adopted
a discrete-time implementation of the events (e.g., UAVs
mobility). This strategy helps to reduce the simulation time
significantly by considering only the counted events rather than
using real execution time. To make the proposed framework
orthogonal on agents (PICA, RELIANCE. . .) implementation,
we have developed a complete framework that consists of
an abstraction layer of the agent and environment. We have
also designed RELIANCE and PICA to be transparent in the
environment and easily adapted to other simulators or real
experiments later. Thus, we believe the suggestion of this sim-
ulator will have an added value to the scientific community.
While PICA has been implemented using Python and Numpy,
the NN model of RELIANCE is implemented with Python and
Pytorch library.

Besides the UoI, the environment also consists
of a set of customizable number of static_intruders
and mobile_intruders. As aforementioned, both UoI
and mobile_intruders move in a 2-D plan using eight possible
actions. The mobile_intruders move in the simulator using a
random walk technique. In contrast to mobile_intruders, the

1https://youtu.be/7UcRxfaAREw

Fig. 6. OpenAI Gym compliant simulator.

UoI moves under the control of either PICA or RELIANCE
agents. The rendering environment consists of a gray screen
with black rectangles and blue, green, and red circles. As
depicted in Fig. 6, the black rectangles and red circles
refer to the static obstacles and the intruder(s), respectively.
Meanwhile, the blue and green circles refer to the UoI and
its targeted position, respectively. The simulation runs in
episodes, such that each of which ends when UoI collides or
reaches the target.

B. RELIANCE Training Mode

The training of the RELIANCE model happens using 14
Dual Intel Xeon E5-2680 v3 @ 2.5 GHz, with 117 GB of
RAM, one Nvidia P100 GPU, and running CentOS 7. During
the training process, we have fixed the size of the simulation
area by 20× 20 and considered ten mobile_intruders besides
three static obstacles with different shapes and sizes. We have
fixed the hyperparameter surrounding area � of the agent
by 5 × 5 after performing a set of different tests. To ensure
fast convergence without underfitting or overfitting, we have
tuned the NN hyperparameters used by RELIANCE. We have
performed many experimental tests before fixing the hyper-
parameters. We have fixed the discount factor γ by 0.95 and
the learning rate α by 10−4. We have also used two fully
connected hidden layers in which the number of units (i.e.,
activation functions) is 40. We have also tested with 400
units in each layer. However, a similar convergence rate is
perceived. We have also observed similar performances dur-
ing the inference mode. We adopted the rectified linear unit
(ReLU) activation function for both hidden and output lay-
ers. An Xavier initialization has been adopted to initialize the
NN units in the model. This initialization helps to converge
fast and prevent the exploding and vanishing gradients dur-
ing the training process. During the training, we have used
batch_size = 1024, replay buffer size = 500 000, and target
update = 8 to update the weight of target network QT from
the policy network Qπ .

As depicted in Fig. 7, we have conducted two sets of exper-
iments. Initially, we have trained one RELIANCE agent as
depicted in Fig. 7(a) for a period of 2000 episodes. In this fig-
ure, while the blue curve shows the cumulative reward gained
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Fig. 7. Convergence evaluation of RELIANCE during the training mode. (a) Immediate and average rewards. (b) Average rewards of 40 agents simultaneously.

at the end of each episode, the red one shows the average of
the last 50 cumulative rewards. From this figure, we observe
that the RELIANCE agent converges at 600 episodes. Starting
from that point, the RELIANCE agent succeeds in most of the
cases to achieve the target without any collision. A live video
has been recorded that shows the convergence of RELIANCE.2

Meanwhile, in Fig. 7(b), we have evaluated RELIANCE
agent’s stability. The NN’s bias and weights are randomly
initialized in the RELIANCE agent, affecting the training con-
vergence. Moreover, at each episode, the starting and target
point of UoI, and the mobility of mobile_intruders are ran-
domly generated. In Fig. 7(b), we have trained 40 RELIANCE
agents, simultaneously. In this figure, we have evaluated both
the average and the cumulative variance reward achieved. We
observe that all the agents succeeded in converging by get-
ting almost the total possible reward after only 400 episodes.
Also, we observe that the variance between the trained agents
is close to 0, which confirms the algorithm’s convergence.

C. PICA and RELIANCE Performance Evaluation During
the Inference Mode

In this section, we evaluate the performances of RELIANCE
in the inference mode against the PICA solution. We simulate
103 episodes and compare the two solutions in terms of the
following metrics.

1) Percentage of Collision: It is defined as the percentage of
times that the UAV agent collides with static_intruders
or mobile_intruders. This metric shows the percentage
of time that the UAV agent fails to achieve its final
destination.

2) PDF of Extra Traveled Distance: It shows the extra dis-
tance needed by a UAV to prevent collisions. This metric
shows the probability of a distribution function (PDF)
of the extra distance traveled to avoid collisions. In fact,
the energy consumption in the UAVs is proportional to
the traveled distance before attending the target loca-
tion. Overall, the more the traveled distance, the higher
energy consumption becomes.

2https://youtu.be/5ULpSuMdRSE

3) PDF of the Number of Success Before a Failure: It
shows the PDF of the number of successes arriving at
the target before the failure, i.e., the UoI collides with
any object. In other words, this metric shows the capa-
bility of each solution for traveling consecutive missions
without any collision.

To assess the generalization capability of RELIANCE, we
have considered three different scenarios during the inference
mode. As aforementioned, we have trained RELIANCE agent
against static obstacles and ten mobile_intruders. In contrast,
during the inference mode, besides the three static obstacles,
we have evaluated the performance of PICA and RELIANCE
agents against 5, 10, and 20 mobile_intruders, respectively.
The idea behinds these three scenarios is to show the capability
of RELIANCE to outlive in unfamiliar environments by lever-
aging the effectiveness of surrounding area � and aggregated
state.

1) Percentage of Collision: Fig. 8 shows the percentage
of collisions as a function of the number of episodes. Both
solutions have been evaluated in harsh conditions by includ-
ing static obstacles and many mobile_intruders in a small area
with dimensions 20×20. Moreover, the mobile_intruders move
randomly without any correlation, which makes hard to predict
their next movement.1 The first observation that we can draw
from this figure is that RELIANCE ensures the generaliza-
tion by behaving well in unseen environments (e.g., 5 and 20
mobile_intruders). We also observe that whatever the scenarios
(5, 10, or 20 mobile_intruders), the RELIANCE offers better
performances than PICA. As expected, we also observe that
the number of mobile_intruders has a negative impact on the
number of collisions as shown in Fig. 8(a)–(c), respectively.

For five mobile_intruders as depicted in Fig. 8(a), regard-
less of the number of episodes, the PICA agent has arrived
at the target without collision with 70% of success. Whereas,
the RELIANCE agent has succeeded with 95% to reach the
target while avoiding the collisions. Increasing the number of
mobile_intruders to 10 hurts the collision percentage in the
network as depicted in Fig. 8(b). We observe that the percent-
age of cases that the UAV agent arrives at the target without
collisions drooped out from 70% and 95% to 65% and 90%
for PICA and RELIANCE, respectively. Finally, as depicted
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Fig. 8. Percentage of collision in PICA and RELIANCE solutions. (a) RELIANCE and PICA against five mobile_intruders. (b) RELIANCE and PICA
against ten mobile_intruders. (c) RELIANCE and PICA against 20 mobile_intruders.

in Fig. 8(c), we observe that the increase of the number of
mobile_intruders to 20 leads to reduce the percentage of suc-
cess to arrive at the destination without collisions to 60%
and 80% for PICA and RELIANCE, respectively.

The better performances achieved by RELIANCE compared
to PICA can be explained as follows. In both solutions, the
algorithm controlling the UoI makes the decisions relying
on the snapshot from the environment to avoid collisions.
The environment snapshot refers to the surrounding area of
UoI that is defined by � and Z in RELIANCE and PICA,
respectively. On the one hand, based on this snapshot, PICA
takes the action that minimizes the likelihood of collisions
in Z . Nonetheless, PICA does not consider the dynamics
of the mobile intruders within Z . In contrast, RELIANCE
using the DRL approach can learn the temporal correlation
between different snapshots � and therefore make more effec-
tive decisions to avoid mobile intruders. This fact explains
why PICA exhibits a higher number of collisions compared to
RELIANCE.

2) PDF of Extra Traveled Distance: Fig. 9 shows the per-
formances of PICA and RELIANCE related to energy saving.
Unfortunately, avoiding the collision comes with an unavoid-
able overhead in terms of the extra distance traveled by the
UoI. This figure shows this extra distance compared to the
traveled distance in the straight travel, i.e., the Euclidean
distance between the UoI starting and target points. We
have estimated the PDF of the PICA and RELIANCE extra
distances from the results from 103 episodes. To that end, we

employed the KernelDensity function from sklearn.neighbors.
We observe that regardless of the number of mobile intruders
(5, 10, or 20), the percentage of extra distance does not exceed
60%, i.e., the UoI travels 1.6 times the distance of the optimal
path.

Fig. 9(a) and (b) shows the PDF of the extra traveled distance
for five mobile intruders. From Fig. 9(a), RELIANCE succeeded
in almost 90% of cases to add only 35% of extra distance
compared to the optimal one (i.e., 1.35 times). With more
than 0.08 probability, RELIANCE succeeded in traveling the
distance with less than 10% extra distance. We also observe
from 9(b) that PICA succeeded in reaching the target in 70%
of cases without adding any extra distance. Also, most of the
extra distance of PICA does not exceed 40%. Observe that
PICA offers shorter extra traveled distances than RELIANCE,
which, overall, translates into energy saving. However, this
reduction in the traveled extra distance offered by PICA is
at the cost of a higher probability of collision, as discussed
previously.

Fig. 9(c)–(f) shows the PDF of extra traveled distance for
10 and 20 mobile intruders, respectively. Similar to the case
of five mobile intruders, we observe that the PICA algorithm
succeeded in most of the cases without adding any extra dis-
tance. Interestingly, we observe that increasing the number of
mobile intruders reduces the extra traveled distance offered
by the PICA solution. This can be explained as follows, in
the simulation, the extra distance of incomplete mission are
filtered (not considered). At each episode, the starting and

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:50:58 UTC from IEEE Xplore.  Restrictions apply. 



OUAHOUAH et al.: DEEP-REINFORCEMENT-LEARNING-BASED COLLISION AVOIDANCE IN UAV ENVIRONMENT 4027

Fig. 9. PDF of extra traveled distance. (a) PDF of extra traveled distance in RELIANCE (five mobile_intruders). (b) PDF of extra traveled distance in
PICA (five mobile_intruders). (c) PDF of extra traveled distance in RELIANCE (ten mobile_intruders). (d) PDF of extra traveled distance in PICA (ten
mobile_intruders). (e) PDF of extra traveled distance in RELIANCE (20 mobile_intruders). (f) PDF of extra traveled distance in PICA (20 mobile_intruders).

target point (i.e., mission) of UoI are randomly generated. In
fact, increasing the number of intruders will create more col-
lisions on the long distance missions comparing to the short
ones. Hence, more short distance mission will participate for
generating the PDF of extra distance. Usually, the probability
of adding extra distance in shorter mission is lower than the
longer ones, which positively affects the PDF of extra distance
metric. Meanwhile, from Fig. 9(a), (c), and (e), we observe
that similar behavior in terms of extra traveled distance. The
RELIANCE solution succeeded to save long distance mission,
however with unavoidable extra distance.

The extra traveled distance and percentage of collision
are two contradictory objectives. The lower percentage of

collision is, the higher likelihood of extra traveled distance
becomes. While the PICA solution leverages a probabilistic
approach by considering only one snapshot of the environ-
ment, RELIANCE employs DRL to make the correlation
between snapshots and then takes the decisions that consider
the mobility of intruders. The safety level, i.e., low probability
of collision with surrounding intruders, offered by RELIANCE
is at the expense of traveling longer extra distances.

3) PDF of the Number of Success Before Failure: Fig. 10
depicts the PDF of the number of success before a failure
happens. It shows the PDF of the number of hits arriving at
the target before the collapse. This metric shows the capabil-
ity of each solution for traveling consecutive missions without
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Fig. 10. PDF of extra traveled distance. (a) PDF of the number of success before a failure in RELIANCE (five intruders). (b) PDF of the number
of success before a failure in PICA (five intruders). (c) PDF of the number of success before a failure in RELIANCE (ten intruders). (d) PDF of number of
success before a failure in PICA (ten intruders). (e) PDF of the number of success before a failure in RELIANCE (20 intruders). (f) PDF of the number of
success before a failure in PICA (20 intruders).

any collision. We have conducted three sets of experiments by
varying the number of mobile_intruders from 5, 10, and 20,
respectively. The first observation that we can draw from
this figure is that the RELIANCE solution performs better
than the PICA solution. Also, we observe that the number
of mobile_intruders harms the number of successes before
failure.

Fig. 10(a) and (b) shows the performances of PICA and
RELIANCE when five mobile_intruders is considered. As
depicted in these figures, while RELIANCE succeeded in get-
ting 120 successful episodes achieving the target safely, PICA
succeeded in achieving the target in 30 episodes without any

single failure. We also observe that RELIANCE’s probability
of fewer than five times consecutively arriving at the tar-
get without interruption does not exceed 12%. Meanwhile, in
PICA, UoI with a probability of almost 1 does not exceed the
15 episodes consecutively. Fig. 10(c) and (d) shows the impact
of ten mobile_intruders on PICA and RELIANCE. We can
observe that the increase in the number of mobile_intruders
hurts the number of successes before failure. In RELIANCE,
the number of successful episodes before a failure is drooped
from 120 to 60. Also, the probability of five consecutive
times arrive at the target without interruption does not exceed
20%. Finally, Fig. 10(e) and (f) shows the impact of ten

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:50:58 UTC from IEEE Xplore.  Restrictions apply. 



OUAHOUAH et al.: DEEP-REINFORCEMENT-LEARNING-BASED COLLISION AVOIDANCE IN UAV ENVIRONMENT 4029

mobile_intruders on the two solutions. We observe that in 1/3
of cases RELIANCE, the number of success before a failure
does not exceed the threshold 5. Meanwhile, for PICA, the
agent with almost probability 1 does not succeed to exceed
15 episodes.

VII. CONCLUSION

The new enthusiasm for extending UAV commercial opera-
tions to cover the urban and populated area controlled airspace
BVLOS comes with unavoidable challenges related to object
detection and collision avoidance. In this article, we suggested
two solutions named: 1) PICA framework and 2) RELIANCE.
While the PICA solution leverages the probability density for
avoiding collisions, RELIANCE uses the DQN technique to
prevent collisions while saving energy consumption. We have
also developed an OpenAI Gym [35] compliant environment1

with graphical rendering capability using Python language and
OpenCV library to evaluate these two solutions. We have
developed a complete framework that includes an abstraction
of the environment and agent. Our plan to make the platform’s
code source, including PICA and RELIANCE agents, public
for the research community.

We have simulated the agent in the context of both
PICA and RELIANCE under similar circumstances. The
agent behaves successively following PICA or RELIANCE to
prevent the collision and save energy consumption. We have
evaluated both protocols in known and unknown environments
to assist their generalization capability. The obtained results
demonstrate their capacity for generalization. Also, they show
the superiority of RELIANCE over PICA in terms of colli-
sion avoidance. Also, the simulation results demonstrated the
convergence of RELIANCE during the training process2.

As a future research direction, we plan to consider other
RL Algorithms, including 1) the Policy gradient method,
such as RELIANCE; Actor–Critic approach, including but not
limited to A3C, deep deterministic policy gradient (DDPG),
trust region policy optimization (TRPO), and proximal policy
optimization (PPO). Also, we plan to consider more com-
plex scenarios by considering the velocity and the acceleration
of UAVs. A real deployment implementation is envisaged of
RELIANCE by leveraging the UAVs available in our lab.
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