
Towards A Fast Service Migration in 5G
Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Miloud Bagaa1, Tarik Taleb1,4

and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland
4 Oulu University, Oulu, Finland

Emails:{firstname.lastname}@aalto.fi1; diegodutra@lcp.coppe.ufrj.br2; hannu.flinck@nokia-bell-labs.com3

Abstract—The development of the 5G technology has been
driven by the need for faster and higher-capacity networks that
would be able to sustain modern, high-demanding applications
and low-latency communication. For achieving such require-
ments, the services should be shifted towards the vicinity of
the users as much as possible. In this scope, Multi-access Edge
Cloud (MEC) will play a tremendous role in 5G technology
by hosting various services close to the end-users. Thanks to
the MEC technology, different services could be placed near
the User Equipment (UEs) for enabling very low latency and
high bandwidth communication, which is required by real-time
applications, such as mobile broadband in vehicles that are
characterized by high UEs mobility. In order to ensure the
service requirement in terms of low-latency communication, those
services should follow (i.e., service migration) the user mobility
by placing them always at the closest MEC. Motivated by the
evolution of real time applications, we propose and evaluate three
different mechanisms to improve the end user experience by using
container-based live migration paradigm. In these approaches, we
leverage the follow-me edge concept for enabling lightweight live
migration. While the two first solutions take into consideration
the mobile users’ paths (e.g., cars), the third one is oblivious to
the users’ paths. The obtained results demonstrate the efficiency
of these solutions compared to prior works.

I. INTRODUCTION

The mobile network traffic keeps increasing at a very fast
pace, and that is due to the emerging mobile applications,
such as high-resolution video streaming, cloud gaming and
augmented reality applications [1]. Within few years, 4G
systems definitely will not catch up with the pace of the traffic
increase, as well as the expected requirements of the new
emerging applications, such as autonomous cars, Unmanned
Aerial Vehicles (UAVs) and augmented reality. For this reason,
many efforts, by both academia and industrial researchers,
have been carried out in order to make the 5G system a reality
in the nearest future.

There is a consensus among academia and industrials that
the 5G system will leverage emerging technology, such as
Network Function Virtualization (NFV) and Software Defined
Networking (SDN), for achieving its objectives [2]. While
SDN gives more flexibility for connecting different compo-
nents and enables the network softwarization, NFV allows
running Virtual Network Functions (VNF) as software compo-
nents on top of a virtualization system (i.e., Virtual Machines

- VMs - or Containers) hosted in various clouds; allowing
high flexibility and elasticity to deploy network services and
functions. These VNFs will run on top of cloud nodes that
are sparsely distributed over the globe. The use of NFV on
top of cloud nodes in the 5G system will reduce dramatically
both capital expenditures (CAPEX) and operational expenses
(OPEX). However, it can be against the requirements of 5G
systems in terms of high data rates and low latency. In fact,
instantiating different VNFs at faraway clouds would have a
negative impact on both the data rates and end-to-end delay. In
order to overcome this limitation, the concept of Multi-access
Edge Computing (MEC) has been introduced [3]. It allows
instantiating various VNFs (i.e, containers) in the vicinity of
users. Indeed, the MEC technology allows the deployment
of a subset of cloud resources at the edge of the cellular
network (eNodeB), thus network congestion is reduced and
better QoS/QoE can be ensured for different customers.

In this context, MEC has been proven to be beneficial in
reducing latency and offering an overall better experience [4].
As mentioned earlier, a user in 5G can be characterized by
high mobility that may take him far away from the original
MEC node where his service runs. In order to overcome such
problem, a new concept, dubbed Follow Me Cloud (FMC)
[5], has been introduced. In fact, the FMC concept allows the
mobility of services between different edges for placing them
closest to end users, which ensures low latency (1ms−10ms)
and high capacity (more than 100 Mbps). However, the main
challenging problem of FMC is the service interruption during
the migration of services from an edge cloud to another, which
dramatically affects the requirements of industrial verticals.

Towards addressing the problem of service interruption
when migrating services between edge clouds, in this paper,
we propose and evaluate three solutions that leverage on the
container technology to reduce the migration time, and then
reduce the services’ interruption. The three solutions leverage
LXC container tool and Checkpoint/Restore in Userspace
(CRIU) for enabling stateful migration, and then ensuring
the service continuity after migration. These proposed solu-
tions enable the FMC concept for ensuring high availability
and ultra-low latency for real-time applications, such as au-
tonomous car driving and UAV traffic management. While the
first two solutions assume that the trajectories of the mobile
users, e.g., cars or UAVs, are well known a priori, the third978-1-5386-4633-5/18/$31.00 c© 2018 IEEE

solution is more general, as it is oblivious to the mobile users’
trajectories.

The remaining of this paper is organized as follows. Sec-
tion II presents the background of this research and some
related work. In Section III, we describe the types of migration
evaluated in this paper and how they are deployed in our test
environment. In Section IV, we present and discuss the results
of our experimental evaluation. Finally, the paper concludes in
Section V.

II. BACKGROUND & RELATED WORK

This section introduces several underlying concepts that
ease the paper readability. A summary of past relevant research
work is also included.

A. Background

1) Linux Container (LXC): LXC is a lightweight virtual-
ization technology integrated into Linux kernel to enable the
running of multiple containers on the top of the same host.
LXC container is built by mixing the Linux namespaces and
CGroups to ensure a soft separation without virtualizing the
hardware as the legacy virtual machine does. Compared to
Docker, LXC [6] is a system level container.

2) Checkpoint/Restore In Userspace (CRIU): The proposed
system leverages the CRIU (Checkpoint/Restore In Userspace)
tool [7], which allows to check-point/restore processes in
Linux systems. It has the ability to save the state of a running
application, so that its execution can later be resumed from
the time of the checkpoint.

3) Live Migration: The live migration is the process that
guarantees the transfer of both the disk and the current memory
pages while the host is in running state.

4) Iterative Migration: The iterative migration aims at
dividing the memory pages copy into several steps, each one
of them (except the last one) does not stop the container and
takes only the changes relative to the previous iteration. We
name each intermediate step the Predump phase, while the last
one is named ”Dump phase”. The Dump phase will provoke
the stop of the instance of virtualization (i.e., container in our
case). However, a small downtime will occur due to the small
number of memory pages copied to the destination host.

5) Downtime: Downtime is the period during which the
services provided by the migrating instance (i.e., VM or
container) are not available or no longer meet user requests.

6) Total migration time: The total migration time is the
period of time between the launch of the migration process
till the moment when the instance is made available to the
destination server.

B. Related work

Yang [8] presented a generic checkpoint/restore mechanism
and evaluated its performance using Docker. Each of the
checkpoint and restore phases took 2183 ms and 1998 ms,
respectively, when considering a 256MB container size. In
contrast to Docker, LXC container gives more flexibility for
running different applications, services, and protocols. Indeed,
Dockers are standalone applications running in an isolated

environment and do not offer any system level functionality.
Moreover, the checkpoint and restore phases take a consid-
erable amount of time for a lightweight container. For this
reason, in this paper, we used the LXC container technology
instead of the Docker technology.

The author of [9] evaluated and compared both OpenVZ
and LXC. The comparison showed that checkpoint/restart
migration on OpenVZ had poor performance when compared
to LXC regarding the Downtime and Total Migration Time.
In [10], the authors evaluated container migration on a MEC
platform based on OpenVZ. Their results showed that the total
time for migration of a blank container is considerable even
when using shared storage (NFS) and shared-async mode with
a range of (10s–11s). Machen et al. [11] presented a multi-
layer framework for migrating active applications in the MEC.
While the obtained results show exceptional total migration
times, the downtime was considerable with an average of 2s
in case of a blank container. The increase of the downtime
is due to the non-use of the iterative approach in the live
migration process. Thanks to the use of LXC combined with
our new migration strategies based on iterative migration, the
proposed solutions enhance the aforementioned works in terms
of migration time as well as the downtime.

III. ON USING LIGHTWEIGHT CONTAINERS IN MEC
ENVIRONMENTS FOR ENABLING MOBILITY APPLICATIONS

In this section, we first present the main architecture of
our proposed framework for enabling lightweight container
migration. Then, we will present the three proposed solutions
that will enable lightweight container migration.

A. Main architecture and problem formulation

Fig. 1 depicts a typical three-layer cloud-based architecture
for 5G networks. The top layer (Layer 3 in Fig. 1) consists of
the core network which can include data centers with powerful
computing resources from different vendors (e.g., Amazon,
Microsoft, and OpenStack). Orchestrated by the top layer,
the edge clouds feature the Radio Access Network (RAN)
with high spectral efficiency and bandwidth. This distributed
computing model allows users – from the third layer – to be
close to the compute capabilities according to their mobility.
In our presented use-cases, we consider UAVs as well as users
on board high-speed vehicles and we assume their paths can be
either pre-determined/predictable (i.e., this allows the system
to trigger the migration process earlier on, before reaching the
edge of the cell), or random which means that they can take a
random path at any given moment and the actual migration has
to be done in a limited time frame (when reaching the edge
of the cell). The main focus is on the implementation of the
live migration itself in several aspects to ensure a seamless
migration across edge clouds, without taking into account
other use-case-specific aspects, such as the signal strength
received by each vehicle, UE or UAV.

Fig. 1. A general architecture.

B. State-full service migration based on predefined path

In this section, we present two solutions that should be used
for predefined paths. A common use-case for this would be
a vehicle or a UAV that has a known path from departure to
destination. Knowing the paths allows the system to anticipate
the different source and target MECs for any migration along
the way of the mobile node. This also means that the different
MECs can be fully independent, e.g., no shared storage is
needed, and gives enough time to copy the file system, which
gives more freedom to the migration service. In the following
section, we will introduce a live iterative migration based on
two different approaches by using the CRIU tool [7].

1) Temporary File System based Lightweight Container
Migration: This solution is also named tmpfs migration. The
tmpfs migration solution starts first copying the container’s file
system along with the user files from the current MEC host
to the destination MEC node using the rsync utility without
service disruption. Second, the memory of the container is
iteratively copied from the source MEC host to the destination
MEC host. In this step, the CRIU utility will be used for
iteratively dumping the container’s memory - while it is
running - into a tmpfs-mounted directory at the source MEC
host. In this case, at the source MEC host, we have one reading
from the memory and one writing to the tmpfs-mounted
directory. In fact, we have one reading and one writing at the
source MEC host. Each Dump is then copied to the destination
host via the network into the tmpfs-mounted directory at the
destination MEC host which will result in a writing operation
at the destination MEC host. Finally, read actions will be
used in order to restore the container at the destination MEC
host. We will also have one reading and one writing at the
destination MEC host.

2) Disk-less based Lightweight Container Migration: In
the first solution, we noticed that the memory images have
two readings and two writings, which could have a negative
impact on the total migration time. The process can be
worse if the application uses a large amount of memory
and/or multiple iterations (Predumps). The disk-less migration
solution overcomes this limitation. It aims to eliminate the
step of copying the images to the local tmpfs directory in

order to reduce further the total migration time. The proposed
solution starts by copying the file system and preparing a
tmpfs mount on both (source and destination) MEC hosts.
Moreover, at the destination MEC host, we start a page server
indicating the images directory and the port which will be
used by the source MEC host to copy the files. Then on
the source MEC host, using CRIU, we have adopted a new
strategy by combining our iterative approach of live migration
with the page server implementation. We start by dumping the
memory pages directly into the target cloud using the two extra
parameters: the page server’s address and port while keeping
the iterative concept working. Finally, we copy the rest of
the images to the destination MEC host and we restore our
container right after.

In order to test the two types of migration procedures as
introduced above, we built a testbed, as shown in Fig. 2(a), to
guarantee the most common architecture in a real case. The
testbed consists of two VM hosts; each one representing a
different Edge Cloud (i.e., an independent Infrastructure as a
Service - IaaS - provider). Our container host is running on
top of the first VM.

C. State-full service migration based on undefined path

In most real-world applications, the service provider (cloud
service provider) does not know the movement pattern of the
users. For this reason, we suggest a more general solution
that considers the paths of users to be unknown a priori.
In this case, the copy of the file system and memory from
the source MEC host to the destination MEC host could
be a challenging process. For this reason, in this solution,
also named lightweight containers migration with a shared
file system, we need to use an alternative, fast and efficient
migration process.

To eliminate the need to copy files over the network during
the migration phase, we stored the container’s file system
along with the system images in a shared storage pool.
This means that the system needs to iteratively unload the
container’s memory using CRIU on the source node and then
restore the container to the target node immediately after. This
approach uses more network resources, while reducing the
total migration time for LXC.

For evaluating the third solution, we have used the testbed,
depicted in Fig. 2(b), that consists of three VMs. The first
VM is the source MEC host, whereas the second one is
the destination MEC host. Meanwhile, the third VM is the
Network File Storage (NFS) server that is used to store the
containers’ file-system. We choose NFS because it represents
a standard file system sharing technique, and while it is not
scalable as a distributed or parallel file system, it allows the
evaluation of the impact that a shared file system has on our
migration procedure with containers. Furthermore, in terms
of performance overhead, it represents for our setup a lower-
bound as a distributed file system would impose additional
overheads for a small-scale deployment. In the testbed, we
have ensured that the three VMs can communicate among
themselves in order to enable container migration. While the

(a) Prototype 1. (b) Prototype 2.

Fig. 2. Proposed prototypes for both known and unknown path solutions

communication between the MEC nodes and the NFS server
is used for disk migration, the direct communication between
MEC nodes is used for the migration of memory content.

IV. EXPERIMENTAL EVALUATION

To evaluate the envisioned container migration scenarios,
virtualized computer nodes are used. Each node uses Ubuntu
16.04 LTS with the 4.4.0-64-generic kernel and has 4 core
CPU and 4GB of main memory. The interconnection among
the nodes is set at 1Gb/s. The container environment was setup
using LXC 2.8 and CRIU 2.6 (i.e., both are stable versions),
while the NFS server used a dedicated virtual machine. For
every container migration, we evaluate the total migration time
and the container downtime as it directly corresponds to the
application responsiveness/availability during the migration
process.

TABLE I
TEST VIDEO SPECIFICATIONS.

Type Configuration
Codec H.264
Duration 442s
Bit rate 1, 560 Kbps
Quality 720p
File size 93.5 MB

We conducted two sets of experiments; each was repeated
ten times. The first one was a blank Linux container migration,
with a file system size equal to 350 MB. We kept an
eye on the container’s network reachability throughout the
migration process in order to observe the impact caused by
adding persistent data. The second one was the migration of a
video streaming server NGINX running on top of a container,
where file-system size was 590 MB. The video used in our
experiments has its configuration described in Table I.

A. Migration induced downtime

The first experiment uses the tmpfs migration strategy
where the blank container’s downtime, standard deviation
and 95% confidence interval are 1042.974ms, 52.790ms
and 39.806ms, respectively. Regarding the video-streaming
container, the downtime, standard deviation and 95%C.I are
1282.012ms, 76.141ms and 57.415ms, respectively. As ex-
pected, the results for the video-streaming container are larger

when compared to the blank container’s results. The difference
in these results is due to the additional copies of the network
connections status and the NGINX internal control data to the
target cloud. We also noticed that the addition of the NGINX
HTTP server introduced more variability in our experiments,
nevertheless, this represented an increase in the coefficient of
variation of less than 15.686% going from 0.051 in the blank
container to 0.059 in video streaming container.

Fig. 3(a) presents a breakdown of these times, alongside the
breakdown of the initial phases of the migration procedure. As
previously described, the migration procedures, adopted for
this paper, use two pre-copy phases – 1st and 2nd iteration
in the figure – before actually migrating the container to the
destination compute node, in the final iteration phase. In the
figure, each one of these iterations can be viewed in the X-
axis, while the Y-axis presents the time in milliseconds. We
also see that for both pre-copy phases, the video container took
longer than the blank container, as the migration procedure
needs to save and copy additional memory updates during
each iteration, which ends up increasing the downtime in
comparison with the blank container by 22.919%.

Our second experimental scenario evaluates the Disk-less
Migration described in Section III. The Disk-less Migration
procedure imposed a 10.499% increase in the downtime for
the blank container migration in comparison with the tmpfs
Migration procedure, which represents a mean downtime of
1152.476ms. The standard deviation for this experiment was
76.332ms and 95% confidence interval was 57.558ms. As
for the video container, the mean downtime was 1465.046,
which represents an increase of 14.277% over the blank
container. The standard deviation for the video container Disk-
less Migration was 107.117ms and 95% confidence interval
was 80.772ms. These results represented an increase in the
coefficient of variation for the downtime of 10.606% when
compared with the blank container going from 0.066 to 0.073.

Fig. 3(b) presents a breakdown of the time for the 3 phases
for the Disk-less Migration experiment scenario using the
same X/Y-axes setup of the previous figure. As Fig. 3(b)
shows, the increase in the downtime was caused by the
increase of the Dump/PreDump sub-phase of the migration
procedure. As perceived in Fig. 3(a), Fig. 3(b) reveals that
the video container took longer time to Dump/PreDump in
comparison with the blank container. Furthermore, comparing
the results presented in Fig. 3(a) and Fig. 3(b), it can be easily

(a) Downtime comparison in case of an Iterative
Migration process.

(b) Downtime comparison in case of a Disk-Less
Migration.

(c) Downtime comparison in case of a NFS
migration.

Fig. 3. Downtime in case of different approaches

noticed that for the blank container and in the pre-copy phases
(i.e., 1st iteration and 2nd iteration), the combination PreDump
took longer time than the same container in the Disk-less
Migration, while the page server augmented PreDump takes a
longer time than the normal PreDump, which reinforces our
suspicions about the page server implementation.

In the last experimental scenario, we evaluate the NFS
migration described in Section III. As the previous scenarios,
this evaluation is carried out with both a blank container
and the video container. Our NFS migration imposed a
74.946% and 58.323% increase in the downtime for the blank
container migration in comparison with the tmpfs Migration
and the Disk-less Migration, respectively. This represents a
mean downtime of 1824.64ms, while the standard deviation
and the 95% confidence interval for this experiment were
122.657ms and 57.558ms, respectively. The mean downtime
for the video container was 2454.374ms, which represents an
increase of 74.342% in comparison with the blank container.
The standard deviation for the video container NFS migration
was 72.592ms and 95% confidence interval was 92.490ms.

In Fig. 3(c), we present the 3 phases of the NFS migration
using the same X/Y-axis as before. Compared to the previous
figures, the downtime increases due to the restore part of
the final iteration. Our preliminary investigation suspects the
network side because the target host restore procedure uses
a remote file system which incurs an additional latency in
the restore procedure. Furthermore, comparing the results
presented in Fig. 3(a) and Fig. 3(b), the restore part takes
much longer time in case of NFS and also the only manner to
do the restore part is to use the target host, which reinforces
our suspicions about the network side.

B. Total migration time evaluation

Our previous experimental results showed that our proposed
approach reduces the downtime caused by the migration
procedure. However, to enable its use for ultra-short latency
services, we also need to address the total migration time.

The mean total migration time for the blank container using
the tmpfs migration method was 16, 405.157 ms and the
95% confidence interval for this experiment was 312.089 ms.
For the video container, this migration method had a mean

Fig. 4. Total migration time experienced in case of different approaches.

total migration time of 28, 788.045 ms and 658.231 ms as
its 95% confidence interval. The Disk-less Migration method
imposed a mean total migration time of 16, 015.2164 ms
and 27, 841.798 ms for both blank and video containers,
respectively. Finally, for our shared storage scenario, the mean
total migration time was 2, 831.442 ms for the blank container
with 95% confidence interval of 54.738 ms, while in case
of the migration of the video container, these values were
3, 678.089 ms and 155.701 ms, respectively.

From the results, we can observe that for tmpfs and Disk-
less Migration, the long migration time was due to the file
system copy, which was avoided in the NFS scenario. Further-
more, for the video streaming container, we clearly notice that
the container size merely affects the total time of migration
in the case of local storage because of the file system copy.
Furthermore, for the NFS scenario, the longer migration time
of the video container in comparison with the blank is due to
the greater number of memory pages been copied.

C. Impact of the number of pages on the migration downtime

As our experimental evaluation results are influenced by the
hardware technology available to us, e.g. network bandwidth,
we summarized in Table II the number of memory pages
copied during the last Dump step in our migration procedures.
In the first column, we have the evaluated scenario, followed
by the mean number of pages copied during our evaluation, the
standard deviation, and the 95% confidence interval. An initial
assessment of this table shows us how disparate the results for

the disk-less migration solution are in comparison with the
others, which corroborates the results presented in Fig. 3(b),
as it indicates that the larger downtime of this approach was
caused by the interaction of the page server and the CRIU
migration code which caused an increase in the number of
copied pages by almost 8.84 times in our worst-case scenario.

TABLE II
SUMMARY OF PAGES COPIED DURING THE LAST DUMP.

Migration types & cases Mean N. Pages Std N. Pages CI 95%
Blank-Tmpfs Migration 509.5 6.3 5.14
Blank-Disk-less Migration 1779.3 6.84 5.57
Blank-Shared file system Migration 517.8 17.56 14.30
Video-Tmpfs Migration 577.1 7.52 6.125
Video-Disk-less Migration 5100.2 12.52 10.20
Video-Shared file system Migration 551 16.8 13.68

The behavior exhibited for the tmpfs and shared file system
solutions are quite similar for both the blank container and
our video streaming container, albeit their disparate downtime
performances. As previously discussed, the higher downtime
for the shared file system solution is caused by the multiple
small writes over the network. Meanwhile, the tmpfs solution
was able to drastically reduce the downtime as it keeps the
number of copied pages in the last Dump small and is able
to fully utilize the network bandwidth through rsync. Fur-
thermore, when we analyze the difference between the mean
number of copied pages for the tmpfs and shared file system
solutions for the blank container, and the same difference for
the video streaming application, we conclude that the CRIU
Dump code exhibits a similar behavior for both solutions.

D. Results Discussion

As addressed in Table II, the tmpfs and shared file system
solutions exhibit a similar behavior with regards to the number
of copied pages during the last Dump for both the blank
container and the video streaming application. The analysis of
the number of copied pages also enables us to do a qualitative
assessment of the impact that the network bandwidth had
over our experimental results, as Table II shows the average
number of pages transferred in our best experimental scenario
was 509.5 for the blank container and 577.1 for the video
container. This means that on average, we transferred 2086912
bytes in the blank container case, and 2281882 bytes in case
of the video application, assuming the default 4KB memory
page used in our evaluation hardware. These transfers would
take around 16.7 ms for the blank container, and 18.9 ms
for the video container assuming a Fast Ethernet connection
(100Mbps), while for a Gigabit Ethernet (1Gbps) the time
spent copying the pages over the network was of the order
of 1.67 ms for the blank container and 1.89 ms for the video
container. This ten times millisecond improvement due to the
network is still fifty times smaller than our improvements in
downtime in comparison with Yang [8] and Machen et al. [11].

We have also observed that although the solutions based
on predefined paths offer the best downtime results, the total
migration time is the highest compared to the other ones. This
is simply due to the fact that the file system, user files, and

memory images are copied during the migration phase. This is
not an issue since we can foresee the migration operations in
advance. In contrast, the solution applied in case of unknown
paths offers great overall migration time, while sacrificing a
few downtime milliseconds since the storage speed is limited
by the available bandwidth of the network. However, this is
the best solution for this scenario since the decision to trigger
the migration along with the migration process itself has to be
done in a matter of a couple of seconds.

V. CONCLUSION

In this paper, we proposed and evaluated three migration
approaches for the container technology to enable the Follow
Me Edge concept using MEC technology, ensuring high avail-
ability and supporting ultra-low latency for real-time applica-
tions, such as autonomous car driving. The Follow Me Edge
allows the system to guarantee a lower latency between the
mobile user and the service provider, which is a fundamental
requirement for 5G networks. We have evaluated the proposed
solutions using real testbed experiments. The obtained results
showed the efficiency of the proposed solutions.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
6Genesis Flagship (grant no. 318927). The work was also
supported in part by a direct funding from Nokia Bell Labs,
Espoo, Finland.

REFERENCES

[1] N. Alliance, “5G White Paper,” Tech. Rep., February 2015. [Online].
Available: https://www.ngmn.org/uploads/media/NGMN\ 5G\ White\
Paper\ V1\ 0.pdf

[2] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing; Softwarization: A Survey on Principles, Enabling Technologies;
Solutions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp.
1–1, 2018.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[4] Y. C. Hu, M. Patel, D. Sabellaa, N. Sprecher, and V. Young,
“Mobile Edge Computing A key technology towards 5G,” Tech. Rep.,
September 2015. [Online]. Available: http://www.etsi.org/images/files/
ETSIWhitePapers/etsi wp11 mec a key technology towards 5g.pdf

[5] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in 2014 IEEE
International Conference on Communications (ICC), June 2014, pp.
1350–1354.

[6] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sept 2014.

[7] team CRIU, “Criu (checkpoint and restore in user space) main page,”
2016. [Online]. Available: https://criu.org/Main\ Page

[8] Yang Chen, “Checkpoint and Restore of Micro-service in Docker
Containers,” in Proceedings of the 3rd International Conference on
Mechatronics and Industrial Informatics.

[9] P. S. V. Indukuri, “Performance comparison of Linux containers (LXC)
and OpenVZ during live migration,” Master’s thesis, Blekinge Institute
of Technology, Sweden, 2016.

[10] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile Edge
Computing Potential in Making Cities Smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, March 2017.

[11] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
Service Migration in Mobile Edge Clouds,” IEEE Wireless Communi-
cations, vol. PP, no. 99, pp. 2–9, 2017.

