
Deep Reinforcement Learning-based Joint Caching
and Computing Edge Service Placement for

Sensing-Data-Driven IIoT Applications
Yan Chen∗, Yanjing Sun∗, Bin Yang† and Tarik Taleb‡

∗School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
†School of Computer and Information Engineering, Chuzhou University, Chuzhou, China.

‡Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
Email: chyan@cumt.edu.cn, yjsun@cumt.edu.cn, yangbinchi@gmail.com, tarik.taleb@oulu.fi

Abstract—Edge computing (EC) is a promising technology to
support a variety of performance-sensitive intelligent applica-
tions, especially in the Industrial Internet of Things (IIoT). The
sensing-data-driven applications whose task processing requires
sensing data from various sensors are typical applications in
IIoT systems. The placement of caching and computing edge
service functions for such applications is vital to ensure sys-
tem performance and resource utilization in EC-enabled IIoT
systems. Therefore, this paper investigates the joint caching
and computing edge service placement (JCCESP) for multiple
sensing-data-driven IIoT applications in an EC-enabled IIoT
system. The JCCESP problem is formulated as a Markov
Decision Process (MDP). Then, a deep reinforcement learning
(DRL)-based approach is proposed to address the challenges
like limited prior knowledge and the heterogeneity of such IIoT
systems. Under such an approach, the policy network of the
DRL agent is constructed based on an encoder-decoder model to
tackle various applications requiring different numbers of service
functions. A REINFORCE-based method is further employed to
train the policy network. Simulation results indicate that the
performances achieved by our proposed approach can converge
after training and are significantly superior to benchmarks.

Index Terms—Edge computing, IIoT, sensing-data-driven ap-
plication, joint service placement, and DRL

I. INTRODUCTION

Edge computing (EC) is emerging technology in Industrial
Internet of Things (IIoT) systems to enable various applica-
tions for intelligent fabrication by extending the ability of
current cloud-based systems to the proximity of applications,
which can simultaneously satisfy requirements of both re-
sources and performances [1]. Unlike general IoT applications,
many IIoT applications are cooperatively performed by multi-
ple facilities, even several vertical sub-manufacturing systems.
Thus, before making operating decisions, the operator of an
application must acquire the working conditions of related
facilities/sub-systems via mining the sensing data captured by
deployed sensors. Meanwhile, these sensing-data-driven IIoT
applications usually need to draw inferences from sensing data
over specific historical periods, which requires the computing
service function (SF) to fetch the necessary sensing data from
servers caching the required sensing data before processing an
arrived task. Therefore, in EC-enabled IIoT systems, multiple

caching service functions (CFs) for caching necessary sensing
data are also required by such a sensing-data-driven IIoT
application in addition to one SF [2].

IIoT applications generally with strict requirements on the
quality of service (QoS) like reliability and latency, which
can be satisfied by utilizing EC to cache necessary data and
process tasks in the edge system [3]. However, orchestrating
the service placement is necessary and vital for ensuring QoS
and resource utilization since edge servers (ESs) are resource-
limited [4]–[6]. Besides, in an EC-enabled IIoT system, the
controller needs further investigate the joint caching and
computing edge service placement (JCCESP) for sensing-
data-driven IIoT applications. However, the problem has not
been studied in current works, and it is challenging when
considering the system heterogeneity in ES resource capac-
ity, bandwidth, and application features. Besides, traditional
approaches requiring prior global system knowledge may be
infeasible since the EC manager may not be authorized to
access the knowledge of underlay communication networks.
In recent years, deep reinforcement learning (DRL) has been
explored to address similar complex problems since the agent
can learn from interactions with an unknown system [6]–[8].
Nevertheless, the number of CFs required by each sensing-
data-driven IIoT application is heterogeneous, making neural
networks with fixed input and output sizes may be unable
to work. The encoder-decoder model prevalent in the natural
language processing community can handle problems with
different length input sequences, where each output size de-
pends on the input. This network model has been combined
with DRL in some works to address combination optimization
problems like TSP [9] and placement problem [10]. In [11],
the service placement for a single easy-to-represent application
was investigated by employing this method. However, each
sensing-data-driven application needs to be represented by a
multidimensional state. Thus, when considering the JCCESP
for multiple heterogeneous sensing-data-driven IIoT applica-
tions, representing all applications requires a high dimension
system state, and the complexity of the problem significantly
increases. Besides, resource congestion among applications
should be considered when considering multiple applications.

Therefore, this work formulates the problem of JCCESP for
multiple heterogeneous sensing-data-driven IIoT applications
as a Markov Decision Process (MDP), and a DRL-based
approach is introduced. The policy network of the DRL agent
is constructed based on the encoder-decoder model. The sys-
tem state is constructed as a sequence composed of real-time
resource consumption conditions of ESs and service functions
required by an application to be placed. Then, a REINFORCE-
based algorithm is used to train the policy network. Simulation
results show that the performance obtained by the DRL-based
approach can converge to significantly improved values after
training and is superior to benchmarks.

The rest of this work is organized as follows: Section II
details the system model and problem formulation. The DRL-
based approach is illustrated in Section III. Simulation results
are exhibited in Section IV. Section V provides conclusion of
this work and discussion of future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an EC-enabled IIoT system, as shown in Fig.1
where some radio access networks (RANs) are deployed with
one ES (h) to support smart IIoT applications, and various sen-
sors (m) are distributed in RANs for monitoring states of the
environment and facilities. To support smart manufacturing,
multiple sensing-data-driven IIoT applications A are executed
by facilities. Each applicationAi can be represented by a set of
required service function including one SF and multiple CFs,
i.e., Ai = {SF,CF1,· · ·,CFKi−1}, where Ki is the number of
required services. Moreover, each CF caches and manages the
sensing data from one sensor required by Ai. The JCCESP
of an application refers to placing its SF and CFs on ESs to
satisfy their resource requirements and QoS of the application.
We use a binary indicator φh

i,k=1 to represent the kth service
of Ai is placed on ES h, and φh

i,k=0 otherwise, i.e.,

φh
i,k = {0, 1}, 1 ≤ ∀i ≤ |A|, 1 ≤ ∀k ≤ |Ai|,∀h ∈ H. (1)

where H is the set of ESs in the system. Meanwhile, each
service function can only be placed on at most one ES, i.e.,∑

h∈H

φh
i,k ≤ 1, 1 ≤ ∀i ≤ |A|, 1 ≤ ∀k ≤ |Ai|. (2)

After placing a service on an ES, resources are consumed
by performing the service. We use ci,k and si,k to represent the
computing and storage resources consumed by the kth service
of Ai. The computing and storage resource consumption of all
services placed on an ES can be calculated, and they cannot
exceed the corresponding resource capacities (Ch,Sh), i.e.,

C1:
|A|∑
i=1

|Ai|∑
k=1

φh
i,kci,k ≤ Ch,∀h ∈ H, (3)

and

C2:
|A|∑
i=1

|Ai|∑
k=1

φh
i,ksi,k ≤ Sh,∀h ∈ H. (4)

After implementing the JCCESP of an application, sensors
whose data are required by the application will actively send

m2

m1

h2

m3

h1

Computing task

Data request and acquisition

Computing result

CF instance

SF instance

CF instance

SF instance

Fig. 1. IIoT system running sensing-data-driven applications

data to corresponding CFs via routing configured by underlay
communication networks. Then, each CF processes the cached
data following a pre-configured caching policy and provides
requested data when receiving a requisition. As shown in
Fig. 1, a computing task is initiated from an initiating facility
and then forwarded to the SF placed on an ES. Before task pro-
cessing, the SF needs to request necessary cached sensing data
from related CFs placed on nearby ESs. The task is processed
after acquiring all required data. Last, a result is generated and
forwarded to the executing facility. We assume that the data
transmission routing is configured by the underlay networks
and inaccessible by the EC service controller since they may
be maintained by different providers. The communications
among RANs are established by a set of communication links
L. We use xli,k = 1 to indicate that caching the data from a
sensor to (k−1)th CF of Ai is transmitted via link l, otherwise
xli,k=0, where k∈{2,· · ·, |Ai|} (i.e., only CFs). We use yli=1

and zli = 1 to respectively indicate the computing tasks and
results are transmitted via link l, and values are 0 otherwise.
Besides, αl

i,k =1 indicates fetching sensing data between SF
and the (k−1)th CF of Ai is transmitted via link l. Then, we
can obtain the bandwidth consumption of any link l, which
cannot exceed its maximum bandwidth capacity Bl, i.e.,

C3:
|A|∑
i=1

(ylib
T
i+z

l
ib

R
i +

|Ai|∑
k=2

(xli,kb
M
i,k+α

l
i,kb

C
i,k))≤Bl,∀l∈L, (5)

where bTi and bRi are the bandwidth consumed by transmitting
computing tasks and results of Ai, separately. bMi,k is the
bandwidth consumed by caching data from a sensor to the
(k−1)th CF of Ai, and bCi,k is the bandwidth consumed by data
acquisition from (k−1)th CF to the SF before task processing.

Meanwhile, the EC service latency of an application Ai∈A
is obtained, which includes the latency used for transmitting
computing task and result, latency in requesting and acquiring
data from CFs, and task processing latency (dPi), i,e.,

Ti =
∑
l∈L

(ylid
T
i + zlid

R
i)+max

k∈K

{∑
l∈L

αl
i,kd

C
i,k

}
+ dPi ,

K = {2, 3, · · · , |Ai|},
(6)

where dTi and dTi are the one-hop latency for transmitting
computing tasks and results of Ai under required bandwidths.
The symbol dCi,k represents the one-hop latency for acquiring
sensing-data from (k−1)th CF of Ai to the SF. We assume
that RANs are close to each other, so the propagation delay
is ignored. Meanwhile, we assume that SFs request data with
short notification frames and CFs can provide the requested
data quickly. To ensure the QoS, the EC service latency of an
application (Ai) should satisfy a constraint (τi), i.e.,

C4: Ti ≤ τi,∀i ∈ {1, 2, · · · , |A|}. (7)

Due to the limited resource capacity of ESs and communi-
cation links, some applications cannot be satisfied by the EC
system. Meanwhile, unsuitable service placement may break
an application’s latency constraint. We define an application
as an accepted application if its all services are placed on
ESs without breaking any constraint, indicated by a binary
indicator ψi=1. Otherwise, the application is rejected by the
system and represented by ψi=0. Then, ψi is determined by
the JCCESP result of Ai, i.e.,

ψi =

{
1, if

∑|Ai|
k=1

∑
h∈H φh

i,k = |Ai|
0, otherwise

. (8)

Moreover, ψi relies on the JCCESP action (ai) and the
result of implementation the action in the IIoT system. If ai
is implemented without breaking any constraint, the JCCESP
policy is maintained, i.e.,

∑
h∈H φh

i,k = 1,∀k ∈ {1,· · ·, |Ai|}.
Otherwise, the application is rejected and the policy is cleared,
i.e.,

∑
h∈H φh

i,k=0,∀k∈{1,· · ·, |Ai|}.
From the perspective of edge service providers, their pri-

mary objective is maximizing the reward from providing high-
performance services to accepted applications. Besides, they
generally want to take full utilization of resources to accept
more applications. Thus, we define the objective as

P1: max

|A|∑
i=1

(ψiβWi
τi
Ti

+ ψi)

subject to : C1,C2,C3,C4,

(9)

where Wi is a weight factor that can represent the importance
or value of an application Ai in actual systems. The left part
of the reward is obtained by providing a low latency service,
which is increased when the service latency is reduced. The
right side is an incentive reward obtained from accepting an
application. β is a factor to balance the two parts flexibly.

III. DRL-BASED JCCESP APPROACH

This section details the employed DRL-based JCCESP
approach for multiple sensing-data-driven IIoT applications.

A. Framework of DRL-based approach

The number of CFs required by applications is heteroge-
neous, and application features like resource requirements are
also heterogeneous, making it hard to represent the service
requirement of all applications in a simple format. Meanwhile,
the JCCESP of applications interferes with each other, making
it hard to decide which applications should be rejected when

Decoder

Encoder

LSTM LSTM LSTM
LSTM LSTM LSTM

Attention

Embedding

Actor

...
...

...

...

Softmax

Constraint
Filter

Softmax

Constraint
Filter

Softmax

Constraint
Filter

Softmax

Constraint
Filter

Softmax

Constraint
Filter

IIoT system

Critic

Embedding
...

.........
...

...

...

...

...
...

.........
...

...

...

...

Estimated

Value

Encoder

LSTM LSTM LSTM
...

Policy
update

Fig. 2. The training architecture of the DRL-based JCCESP approach for
multiple sensing-data-driven IIoT applications

breaking constraints after implementing JCCESP for all appli-
cations at once. For example, the resources freed by rejected
applications can be re-utilized to satisfy other applications,
requiring re-designing the JCCESP action, and the problem
may repeat. Therefore, we set multiple IIoT applications to be
processed one by one, and the order is based on its arrival
to maintain fairness. At each time, the edge service controller
makes a JCCESP at for an application At based on observed
system state st. Then, the IIoT system implements at, and a
reward rt can be obtained. Meanwhile, the system evolves into
the next state st+1. Since the action at each step is made only
based on the current state, and the state transition depends on
the current state and employed action, the JCCESP process
of multiple IIoT applications is an MDP. Then, DRL can be
employed for such problems in heterogeneous IIoT systems
with limited prior knowledge because it aims at learning a
policy that can maximize the expected accumulated reward of
an MDP. Fig. 2 shows the training framework of the DRL-
based approach. Besides, only the actor works when the agent
is fully trained and implemented in the system (i.e., execution
phase). Moreover, the training process can be re-triggered
when system requirements change or observing a significant
system QoS degradation. The state, action, and reward are
defined as follows.

State: The system state consists of two parts: the re-
source capacities and real-time observed consumption con-
dition of all ESs (set = [Ch,Sh, Co

h,t, S
o
h,t]4×|H|), and the

service sequence (sat = [SFt,CF1,t,CF2,t,· · ·]6×(|At|+1)) of
the application to be placed (At). The state of each SFt

is represented by two columns, which include the bTt , b
R
t ,

dTt , d
R
t , d

P
t ,Wt, τt, st,1, ct,1 as well as the indexes of RANs

where the initiator and executor of the application are located.
The state of CFk−1,t is represented by one column including
bMt,k, b

C
t,k, d

C
t,k, ct,k, st,k and the index of each related sensor.

st = {set , sat }. (10)
Action: Action is an one-dimensional sequence of the same

length as the input state, where each element is the index of
an ES that the corresponding service will be placed on it.
The resource condition of ESs in the input state sequence is
treated as virtual services. Thus, the action generated by the
DRL agent can be represented by

at = [akt]1×(|H|+|At|+1). (11)
Then, the system will select the part that indicates the JCCESP
of the application’s actual services and implement it. The SF
is represented by two columns since it contains more features.

Reward: An immediate reward rt is obtained based on if
the system accepts the application after executing the JCCESP
action selected from at in the system. We calculate the rt as

rt =

{
βwi

τt
Tt

+ t
|A| , if At is accepted

0, otherwise
, (12)

where wi =
Wi∑|A|

j=1 Wj

is the normalized weight value.

B. DRL-based JCCESP approach

The JCCESP action for each application is the combination
of actions for all of its services, resulting in a vast discrete
action space for every application. Thus, the value-based DRL
methods (e.g., deep Q-learning) in which action is selected
by comparing values of all candidate actions are unsuitable
for such problems as estimating and comparing values of
all JCCESP candidate actions is difficult. Thus, policy-based
RL algorithms have been explored to address continuous and
large-scale state and action space problems.

As shown in Fig. 2, the actor network is responsible for
generating the JCCESP action for each input application. The
process is detailed in Algorithm 1. Each system state sequence
is composed of an application service sequence and the real-
time resource condition of ESs, which is first passed by an
embedding layer and the encoder. Then, a final hidden state
(Y0) is generated, and hidden states (Ht) at each encoding step
(i.e., each element in the sequence) are also obtained (step 5).
Then, the outputs will be used in decoding steps recurrently
processed by a long short-term memory (LSTM) layer. The
LSTM layer can be seen as a function of two inputs: the LSTM
input and the hidden state obtained from the previous step, i.e.,

Yj = LSTM(Yj−1, (ρj−1,Cj−1)) (13)

The LSTM input tuple (ρj−1,Cj−1) is the contacted array of
action selected in previous decoding step and a context vector
generated by attention mechanism [12], i.e.,

Cj = Attention(Yj ,Ht). (14)
The input of the first decoding step (i.e., (ρ0,C0)) is filled with
trainable parameters (step 6). A linear layer (green rectangle
in Fig. 2) whose output size is equal to |H| is employed to get
the action of placing a service. The linear layer processes the
output hidden state (Yj) and the obtained context (Cj) to get
a set of score values (Pj). For simplification, we use a map
function fD to represent the above steps, i.e.,

(Yj ,Pj) = fD(Yj−1, ρj−1,Ht). (15)
Besides, a constraint filter is added after the linear layer to
avoid selecting actions that will break the resource constraint

of ESs (step 8∼step 14). If the estimated resource consumption
exceeds the capacity of an ES after adding the resource
requirements of the service, the corresponding location value
of Pj is set to be −∞. Then, passing the modified Pj through
a softmax function, the probabilities of selecting each ES Pj

to place the service are obtained, in which the probability of
selecting an ES that will break resource constraint is 0. Then,
sampling from these probabilities gives the action of placing
the service (step 15).

Algorithm 1 JCCESP for one sensing-data-driven application
Input: set ← Observed resource state of ESs

sat ← Services of the application to be placed
Output: JCCESP action at and corresponding probabilities

1: (Ch,Sh)← Resource capacities of all ESs
2: (Co

|H|,S
o
|H|)← Estimated resource consumption

3: st = {set , sat } State inputted to the agent
4: Kt ← length of the st sequence
5: (Y0,Ht) = Encoder(Embedding(st))
6: (ρ0,C0)← Trainable start input of Decoder
7: for j = 1, 2, · · · ,Kt do
8: (cj , sj)← Resources required by jth service
9: (Yj ,Pj) = fD(Yj−1, ρj−1,Ht)

10: Pj ←
[
p1, p2, p|H|

]
11: g = [(Co

|H| + cj) > Ch] + [(So
|H| + sj) > Sh]

12: Pj = Pj(1− g) + (Pj −∞)g
13: Pj =softmax(Pj)
14: ajt = action sample (Pj)
15: Update (Co

|H|,S
o
|H|)

16: at = [a1t , a
2
t , · · · , a

Kt
t], Pt = [P1,P2, · · · ,PKt]

Since the JCCESP process for multiple sensing-data-
driven IIoT applications is an MDP with finite steps, we
employ a REINFORCE-based algorithm to train the pol-
icy network. The JCCESP MDP trajectory can be rep-
resented by a sequence of state, action and reward tu-
ples, i.e., (s1, a1, r1), · · · ,(st, at, rt), · · · , (sd, ad, rd). Note
that (sd, ad, rd) denotes that the system reaches a terminal
state. In this work, we set the system to reach the done state
once an application is rejected due to breaking any constraint.
Because a better controller can place more applications before
breaking any constraint. Moreover, we assume the IIoT system
will refuse to execute subsequent actions since they may also
be irresponsible actions that damage other parts of the system.

The accumulated reward of the JCCESP of multiple sensing-
data-driven IIoT applications is the sum of the immediate
reward of all steps in the trajectory from an initial step, i.e.,
R(st) =

∑d
µ=t rµ. For any given state, the object of DRL is

to find a policy to maximize the expected accumulated reward.

Jθ = E{s∼S,πθ}[R(s)] (16)

where S represents the state space of the system. πθ is
the policy of the edge service controller with parameters θ.
Then, according to REINFORCE algorithm, the policy can be
updated by the policy gradient method [13], i.e.,
∇Jθ = E{s∼S,πθ}[(R(s)− ṽ(s))∇θ log(pθ(a|s))], (17)

where ṽ(s) represent state values estimated by an auxiliary
critic network (as shown in Fig. 2) to improve the stability
of the training process. In actual implementations, the accu-
mulated reward generally employs a discounted format, i.e.,

Gt =

∞∑
µ=t

γµ−trµ. (18)

The detailed training process is shown in Algorithm 2, in
which the probability of selecting an action is calculated by
the probability chain rule (step 14).

Algorithm 2 Training of JCCESP based on REINFORCE
Input: Actor network (θ), Critic network (θv), IIoT system
Output: Trained JCCESP policy networks.

1: for Episode = 1, 2, · · · , n episodes do
2: System initialization
3: A← IIoT applications to be served
4: for t = 1, 2, · · · , |A| do
5: set ← Observed resource state of ESs
6: sat ← Services of tth application in A
7: ṽt = Critic(set , s

a
t)

8: Obtain at and Pt by performing Algorithm 1
9: rt ← Reward obtained by implementing at

10: if rt == 0 then
11: break
12: else
13: Update the system state
14: pθ(at|st) =

∏Kt

j=1 Pt(j, a
j
t)

15: Calculate discount rewards [G1, G2, · · ·]
16: Jθ = −Et∼|A|[(Gt − ṽt) log(pθ(at|st))]
17: Jθv = Et∼|A|[(Gt − ṽt)2]
18: Update θ of actor by Adam(∇θ(Jθ))
19: Update θv of critic by Adam(∇θv (Jθv))

IV. PERFORMANCE EVALUATION

Simulations are conducted based on Pytorch 1.8 environ-
ment to evaluate the performance of the DRL-based approach,
and we compare it with two benchmarks: the random policy
and the load-least algorithms. The random approach randomly
selects an ES for each service in each application, and the
load-least algorithm selects the ES with the least real-time
computing load to place a service. The computing load on an
ES is defined as the maximum ratio of the computation and
storage resource consumption to the corresponding maximum
resource capacities of the ES. Meanwhile, the constraint filter
is also employed in the random method to postpone breaking
the resource constraint of ESs.

We randomly select 7 RANs in the network to deploy an
ES, where the resource capacities and locations (i.e., Ch,Sh,
and associated RANs) of ESs are randomly generated. For
simplicity, computing and storage resources are normalized
values, representing the number of resource blocks that ES
can provide or required by each service function. Meanwhile,
we set SFs requiring more computing resources but fewer
storage resources than CFs because SF mainly undertakes task

computing and CF mainly undertakes data caching. Besides,
computing tasks are generally large volumes of data and re-
quire significant processing time. An online network topology
is employed1, and the routing of the underlay communication
network is configured by the Dijkstra method. Detailed infor-
mation is shown in Table I. The learning rate of actor and critic
are separately set to be 0.001 and 0.002 at first and reduces
to 0.1 times of initial value after 3000 episodes of training to
improve stability. The discount factor (γ) used in (18) is 0.9.

TABLE I
PROPERTIES OF EDGE SERVERS

ES 0 1 2 3 4 5 6
RAN 22 10 4 19 32 2 20
Ch 970 764 766 843 761 602 791
Sh 521 600 949 573 617 729 559

Besides, 50 sensors are randomly placed in the system.
Then, at each training episode, we generate 40 applications.
The task processing of every application relies on sensing data
from multiple randomly selected sensors (i.e., CFs). Besides,
the parameters of every SF and CF are random generated
integer values based on parameters detailed in Table II.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
|K| [3, 10] Wi [1, 5]
τi [300, 400] ms dPi [50, 80] ms
dTi [15, 20] ms dRi [2, 10] ms
dCi,k [10, 15] ms bCi,k [5, 10] Mbps
bTi [20, 50] Mbps bRi [2, 8] Mbps
bMi,k [10, 20] Mbps LSTM layer 3
ci,1 [5,15]×10 si,1 [2, 8]

ci,k, (k > 1) [2, 8] si,k, (k > 1) [2, 8]×3
Embedding size 128 Hidden size 64

2000 4000 6000 8000 10000
Episodes

140

160

180

200

220

240

260

280

Av
e

pe
rfo

rm
an

ce
 re

w
ar

d

(a)

Random
Load-least
DRL-based

2000 4000 6000 8000 10000
Episodes

24

26

28

30

32

34

36

Av
e

nu
m

be
r o

f a
cc

ep
te

d
Ap

ps

(b)

Random
Load-least
DRL-based

Fig. 3. Training performance. (a) Average latency performance reward.
(b) Average number of accepted applications.

First, we test the convergence of the DRL-based approach.
We statistic the number of applications (Apps) accepted by the
IIoT system before breaking any constraint in each training
episode. The performance reward is obtained from accepted
applications and is calculated by the left part of (9) in each
training episode. The results during the training process are
processed by the simple moving average method over every
100 episodes. From Fig. 3, we can observe that DRL-based
algorithms can achieve significant performance improvement

1http://www.topology-zoo.org/files/Bics.gml

and performance convergence after training. The load-least ap-
proach does not perform better than the random approach with
constraint filter because it only considers limited knowledge
about ESs’ resource consumption. After training, the DRL-
based approach can accept an average of about 36 applications,
much higher than 24 and 26 applications separately obtained
by the load-least approach and the random method. Mean-
while, the results of performance reward present the same
phenomenon. The results reveal that the DRL-based approach
can accept more applications before breaking any constraint,
and accepted applications are performed with low latency since
higher rewards are achieved.

20 30 40 50
Number of IIoT applications

0

50

100

150

200

250

300

Av
er

ag
e

pe
rfo

rm
an

ce
 re

w
ar

d

(a)

Random
Load-least
DRL-based

20 30 40 50
Number of IIoT applications

0

5

10

15

20

25

30

35

40

Av
e

nu
m

be
r o

f a
cc

ep
te

d
Ap

ps

(a)

Random
Load-least
DRL-based

Fig. 4. Execution performance. (a) Average latency performance reward.
(b) Average number of accepted applications.

We also test the execution performance of the trained policy
after finishing the training phase, and the result is shown in
Fig. 4, where we generate different numbers of applications
at each time with a different random seed. We can find that
the number of accepted applications and achieved performance
rewards significantly increased as the number of IIoT applica-
tions increased when employing the trained DRL-based policy.
When the number of applications is 20, the system can accept
almost all applications, while the DRL agent can help achieve
a higher performance reward. The benchmarks achieve similar
performance results when more than 30 IIoT applications, i.e.,
cannot achieve higher rewards and accept more applications
when the number of applications increases. The trained DRL-
based policy can also accept almost all applications when there
are 30 IIoT applications. When the number of applications
is 50, the DRL agent achieves similar performance as the
condition of 40 IIoT applications because the system can only
accept finite applications due to limited resource capacities.

V. CONCLUSION AND DISCUSSION

This work investigates the JCCESP problem for multiple
sensing-data-driven IIoT applications, where each application
requires a sequence of edge service functions, including one
SF and multiple CFs. Then, considering the limited prior
knowledge of the underlay network and complexity resulting
from the heterogeneity of applications, the problem is formu-
lated as an MDP, and a DRL-based approach is proposed. The
policy network employs an encoder-decoder architecture to
cope with the issue of different lengths of application service
sequence and the requirement that the length of an output
action depends on the length of the input state. After that,
a REINFORCE-based architecture is employed to train the

policy network. Simulation results show the effectiveness of
the DRL-based approach, where the performance achieved by
the DRL-based approach converged to significantly improved
results after training compared to benchmarks.

In the future expansion of this work, more advanced off-
policy DRL approaches like DDPG, TD3 and SAC can be
explored to improve the training stability and exploration. Be-
cause REINFORCE-based on-policy DRL algorithms can only
update parameters with the latest experiences after completing
an episode, which results in low experience utilization and
sensitivity to environment and hyperparameters.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of
China (No. 62071472), the Program for ‘Industrial IoT and Emergency Col-
laboration’ Innovative Research Team in CUMT (No. 2020ZY002), the Fun-
damental Research Funds for the Central Universities (No. 2020ZDPY0304),
the Chinese Government Scholarship (CSC202006420096), the Academy of
Finland Projects: 6Genesis (No. 318927) and IDEA-MILL (No. 335936)

REFERENCES

[1] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service placement
for edge computing in dense small cell networks,” IEEE Transactions
on Mobile Computing, vol. 20, no. 2, pp. 377–390, 2021.

[2] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Transactions on Mobile
Computing, vol. 19, no. 6, pp. 1359–1374, 2020.

[3] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things real-
ization,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[4] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,“Joint
service placement and request routing in multi-cell mobile edge com-
puting networks,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 10–18.

[5] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications,
2019, pp. 514–522.

[6] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[7] S. Wang and T. Lv, “Deep reinforcement learning for demand-aware
joint vnf placement-and-routing,” in 2019 IEEE Globecom Workshops
(GC Wkshps), 2019, pp. 1–6.

[8] G. Li, H. Zhou, B. Feng, Y. Zhang, and S. Yu, “Efficient provision
of service function chains in overlay networks using reinforcement
learning,” IEEE Transactions on Cloud Computing, pp. 1–1, 2019.

[9] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, vol. 28. Curran Associates,
Inc., 2015, pp. 2692–2700.

[10] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
International Convention Centre, Sydney, Australia: PMLR, 06–11 Aug
2017, pp. 2430–2439.

[11] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2020.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, United States,
May 2015.

[13] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, p.
229–256, 1992.

