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Abstract— Attacks against encrypted protocols are becoming
increasingly popular. They pose a serious challenge to the conven-
tional Intrusion Detection Systems (IDSs) which heavily rely on
inspecting the network packet fields and are consequently unable
to monitor encrypted sessions. IDSs can be broadly categorized
into two types: signature-based and anomaly-based IDSs. The
signature-based IDSs rely on previous attack signatures but
are often ineffective against new attacks. On the other hand,
anomaly-based detection systems depend on detecting the change
in the protocol behavior caused by an attack. The latter can
be employed to detect novel attacks, and therefore are often
preferred over their signature-based counterpart. In this paper,
we envision an anomaly-based IDS which can detect attacks
against popular encrypted protocols, such as SSH and SSL. The
proposed system creates a normal behavior profile and uses non-
parametric Cusum algorithm to detect deviation from the normal
profile. Upon detecting an anomaly, the proposed mechanism
generates an alert, sets a delay to the protocol response, and
traces back the attacker. The effectiveness of the proposed
detection scheme is verified via simulations.

I. INTRODUCTION

The ever growing use of network-based applications de-
mands security against malicious attacks such as IP spoof-
ing, Denial of Service (DoS), and Man-in-the-middle attack
(MITM) through the use of encrypted protocols. Most modern
servers accommodate cryptographic or encrypted protocols
such as Secure Socket Layer (SSL), Transport Layer Security
(TLS) and Secure Shell (SSH) protocols, which provide means
of encrypting the otherwise visible “plain-text” from the appli-
cation layer and nicely sit on top of transport layer protocols
such as Transport Control Protocol (TCP). SSL/TLS are used
to provide client-server authentication to establish a secure
session by a mutual “handshake” through which the client and
server can communicate both ways in a secure manner. On the
other hand, SSH provides secure communications, often using
username/password based authentication between the client
and the server. These encrypted protocols are, however, subject
to exploits, unauthorized accesses, and attacks.

The main motivation behind this paper comes from realizing
the fact that attacks against encrypted protocols do exist
in practice. Additionally, more sophisticated attacks against
cryptographic protocols are emerging. A prime example of
such attacks is the remote timing attack [1] against OpenSSL
server which, under typical conditions, is able to extract the
private key used by the server in just over six hours.

This work was inspired by the existing anomaly-based IDS
called “Protomon” [2]. Although Protomon offers a unique
approach to learn the normal behavior profile of the network

and provides specification-based anomaly detection with a
lower false alarm rate, it has some significant shortcomings
like the use of a simple threshold-based mechanism to set up
alarms and lack of an effective damage control scheme. Our
paper addresses these issues efficiently and devises adequate
solutions. Moreover, the scope of our work is not necessarily
limited to only detecting attacks against encrypted protocols.
The proposed approach monitors unencrypted portion of the
TCP header and extracts features which can be used for de-
tecting anomalies. Certain modifications of this approach may
also be used for detecting some attacks against non-encrypted
protocols. In this work, we use the non-parametric Cusum
algorithm [3], a time series statistical model to determine the
threshold depending on the network conditions based on which
anomalies are detected. To devise this model, a database is
designed to store snapshots of essential network and protocol
parameters under normal network conditions (i.e., no attacks).
The non-parametric Cusum algorithm can detect subtle-most
changes in the network behavior that should be able to warn
against even a slight malicious activity. We then attempt to
evaluate the performance of this approach by measuring the
latency between the attack-instance and attack-detection for
different parameters. Finally, in the proposed scheme, the
network topology consists of monitoring stubs placed in a
distributed fashion, which seamlessly cooperate among one
another. This cooperative strategy is used to perform traceback.

The remainder of this paper is organized as follows. Sec-
tion II surveys some related works on intrusion detection
systems. Section III describes the network topology of the
proposed architecture. The section also presents the scope
of attacks detectable by the proposed method and designs
the database which provides inputs to the non-parametric
Cusum algorithm used as the anomaly detector in the proposed
scheme. The performance of the proposed scheme is evaluated
in Section IV. Section V concludes the paper.

II. RELATED WORK

Over the recent years, Intrusion Detection Systems (IDSs)
have been the primary tool in detecting malicious activities or
attacks. Most IDSs investigate the network packet headers and
provide effective detection of attacks against application pro-
tocols. However, these conventional IDSs are often unable to
detect attacks against protocols which use encrypted sessions.

Primarily there are two approaches to detect intrusions,
namely signature-based and anomaly-based detection tech-
niques. The signature-based or rule-based detection technique
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uses a database of previously known attacks to compare and
match an attack. Though this technique is effective in detecting
a known attack, it fails to detect an attack for which there
is no signature stored. On the contrary, anomaly-based IDSs
are used to first learn the normal profile. At the advent of an
attack, an anomaly-based technique detects a notable deviation
from the normal profile which signals a potential attack. Even
in case of a novel attack that disturbs the normal state of
the network learnt during the profiling stage, the attack can
still be detected. However, anomaly-based intrusion detection
techniques are prone to higher false alarm rates.

Recent researches have focused on detecting various attacks
against cryptographic protocols such as SSL/TLS and SSH.
OpenSSL, the widely used implementation of SSL, is particu-
larly vulnerable to many attacks such as timing attacks [1]
where the attacker measures the time an OpenSSL server
takes to respond to decryption queries. Consequently, the
attacker is able to extract the private key stored in the server.
Canvel et al. [4] illustrate password attacks against Internet
Messages Access Protocol (IMAP) servers using SSL-tunnel
with its peer users. SSL version 3 is also susceptible to Version
Rollback attack [5] where an attacker forces the SSL server
to downgrade its SSL version. The attacker then exploits the
vulnerabilities of the lower version of SSL. There have been
numerous buffer overflow attacks against openSSL servers
causing DoS. For instance, Slapper worm [6] propagated
through the internet posing a serious denial of service threat
to Apache webservers which use the MOD-SSL library.

The use of SSL/TLS session-aware user authentication [7]
is a new concept that can thwart the MITM attack against
SSL/TLS-based client/server communications. In this ap-
proach, a client first authenticates and provides some credential
to the valid SSL/TLS-based server. A User Authentication
Code (UAC) is generated based on this credential and the
initial SSL/TLS session. Even if an attacker hijacks the con-
nection and intercepts the UAC from the client, the attacker
cannot modify the contents of UAC, since it is encrypted. To
imposter as a client, the attacker has to use his or her own SSL
session to communicate with the server. Retransmitting the
intercepted UAC will be useless because the UAC is session
specific. When the server sees that the submitted UAC has
a different session ID than the current session ID, it will
immediately suspect that the UAC came from some entity
other than the valid client. The server will then drop this
suspicious session.

WebSOS [8] is an overlay-based architecture that ensures
client access to a webserver under a DoS attack. Traffic from
a source to a target server uses a route through access points,
beacons, and servlets. End-to-end communication between a
client and the server is encrypted using a SSL session. If an
access point is attacked, an alternate access point is chosen
to enter the overlay. If a beacon is attacked, the node exits
the overlay and new paths are discovered over the changed
overlay topology.

Protomon [2] describes an anomaly-based IDS for cryp-
tographic and application protocols with low false positive

rates. Protomon operates in three modes, namely Learn, Detect
and Prevent modes. In the Learn mode, a monitoring stub
per server constructs normal usage patterns for the monitored
protocol by considering various parameters such as the max-
imum number of protocol-sessions and maximum number of
broken sessions during the sampling time. During the Detect
mode, online observations are constantly compared with the
acceptable threshold of normal profiles over long and short
term distributions. When Protomon detects an anomaly, it goes
to the Prevent mode. In the Prevent mode, the monitoring
stub slows down the protocol response, forcing the anomaly
to stay within the threshold. The delay is revoked when no
more anomaly is detected.

Protomon offers a unique solution by integrating lightweight
protocol monitoring processes with the protocol library. How-
ever, it uses a simple arbitrary threshold to determine the
anomaly. The Protomon provides a mere damage control
mechanism by imposing delay in the Prevent mode, and
it does not provide any traceback mechanism. Furthermore,
a monitoring agent for each server serves the purpose but
perhaps not as efficiently as compared to a distributed set of
monitoring stubs exchanging information. Our work presents
a solution to these problems by using a dynamic thresholding
scheme to detect anomaly, tracing back the roots of attackers,
and distributing unique monitoring agents over the network
topology, as will be described in the next section.

III. PROPOSED ARCHITECTURE

A. Envisioned Attacks

There exist many attacks against cryptographic protocols.
Examples of such attacks depend on the design and im-
plementation of the protocol. For example, the OpenSSL
implementation of SSL is vulnerable to specific remote tim-
ing attacks, MITM attacks, buffer overflow attacks [9] [10],
and Version Rollback attacks. In the remote timing attack,
SSL renegotiation attack, and password attack (also known
as dictionary attack or brute force attack), there is a high
interaction between the attacker and the cryptographic protocol
server. In case of a buffer over-flow attack, few messages are
exchanged between the client and the server. Let us call such
attacks as ‘low interactive attacks’. From this observation,
we broadly categorize the different attacks into two types:
highly interactive attacks and low interactive attacks. In order
to detect a low interactive attack, it is sufficient to define a
strict protocol state change directly at the server. Our target is
to detect the highly interactive attacks.

B. Considered Network Topology

The envisioned network topology as shown in Fig-1 con-
sists of a number of servers running services based on both
encrypted and application level protocols. Users from an
untrusted network or from the Internet can connect to any one
of these servers. Our approach is not to implement the IDS at
the servers, which would put additional load on the servers.
Rather, the IDS is implemented aside of network elements
such as routers. We call each IDS entity a monitoring stub
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Fig. 1. Envisioned architecture.

(MS). Rather than placing a MS for each server as in [2],
MSs are strategically distributed over the entire network. The
functionality of a MS is described in the following subsection.

C. Functionality of a Monitoring Stub

Each MS is a packet sniffing entity implemented close to a
router. For application level protocols, it is possible to sniff the
network packet headers as well as the payloads, and inspect
and analyze them at a later instant. For encrypted protocols,
a MS uses the tcpdump utility to monitor the TCP headers
which are not encrypted. For instance, detection of a failed
SSH session by a MS requires the system to know how the
SSH protocol works in the transport layer level. A client first
attempts to establish a connection to the server by sending
a SYN packet. The server acknowledges this by sending an
ACK packet and a SYN packet of its own. If the client
successfully logs onto the server and wants to quit, the client
will initiate the FIN packet first. On the other hand, if the
server initiates the FIN packet first, it means the server is
closing the connection either due to an invalid “login” attempt
or a time out. If a monitoring stub monitors that the server is
the first originator of the FIN packet soon after the connection
attempt, it deems the event as a “failed session”.

To serve the purpose of an IDS, a MS performs a number
of functions: learning normal profiles, monitoring, generating
alerts, and tracing back the attacker.

Learning Phase

In order to detect anomalies, it is important to study the
protocol implementations and standard documents such as
Request for Comments (RFCs), from which we can define
the normal mode of the protocol operations. Furthermore, the
protocol behavior in a network is not likely to remain the same
all the time. For example, protocol behavior during day-time
may be different than that at night. So, a statistical profile
over time is also developed in the profiling phase. To do
so, profiling is done during the normal network conditions or
near normal network conditions with low acceptable levels of

anomaly. Each MS creates a database with carefully chosen
features that are extracted from monitored traffic over time.
These features are chosen and recorded in such a way that
they can serve as parameters to the non-parametric Cusum
algorithm used by the MS in the detection phase. The format
of a typical table from the database is shown in Fig-2. Sn and
Tn are the two features that are extracted for a target protocol
(e.g., SSH, SSL) over the profiling interval, ∆n. Sn and Tn

indicate the number of failed sessions and number of total
sessions, respectively. Using these two values, the fraction of
failed sessions, Fn, is then computed and stored.

Detection Phase

We have chosen the non-parametric Cusum algorithm
over the classical version because pre-change and
post-change distributions for Internet-based applications
including cryptographic applications are usually not known
a priori [11]. Here, we analyze a random sequence consisting
of the number of failed SSH sessions in a time interval. We
obtain the fraction of failed sessions, Fn, in a time interval,
∆n [n=1,2,3... and ∆n+1=∆n]. The mean of Fn, m, over
the profiling period of normal scenario is much less than one
and remains close to zero until an anomaly occurs [Fig-3(a)].
However, one assumption of the non-parametric Cusum
algorithm is that the mean value of the random sequence is
negative during the normal conditions and becomes positive
when a change occurs. So, it is necessary to transform
Fn into a new sequence Gn. The transformation is given
by (Gn = Fn - β) as shown in Fig-3(b), where β is the
transformation parameter [11] such that (β >> m). We
compute β by taking the average of the highest Fn values
obtained during the profiling period. During an attack, the
increase in the mean of Gn during an observation period
compared to that during the profiling period can be lower-
bounded by h, which is typically set as twice the value of β.
The problem of the online detection of attacks is solved by
employing a recursive version of the non-parametric Cusum
algorithm defined by a new sequence Yn as follows:

Yn = (Yn−1 + Gn)+; Y0 = 0 (1)

where x+ = x if x > 0; otherwise, x+ = 0.
A large value of Yn is a strong indication of an anomaly,

i.e., a potential attack. A constant θ, for this profiling, is
adjusted as a threshold for detecting attacks as shown in
Fig-3(c). θ is computed by the following Equation [12]:

θ � [h-(β-m)] · (td − t0)+ (2)

In the absence of attacks, the Gn values lie mostly lower
bounded by (-β). During an attack, the Gn values become
positive and substantially large. As a tolerable margin of this
change, h is set roughly twice the value of β. t0 and td,
respectively, indicate the starting time and desired detection
time of the attack. (td-t0) is usually set to a small value (e.g.,
1s) for quickly detecting an anomaly.
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Fig. 3. Computing non-parametric Cusum.
At the detection phase, the MS computes Yn over time. The

Yn will remain close to zero, i.e., along the horizontal time
axis as long as normal conditions prevail in the network. The
adopted Cusum algorithm has a computational complexity of
Θ(1) and yields a low memory use [13].

Alert Phase

When an anomaly occurs, the Yn sequence starts to increase.
When Yn goes beyond θ, an alert is generated by the MS
(Fig-3(d)) to the server and the neighboring monitor stubs
in the topology. The MS can also slow down the protocol
response; to thwart the remote timing attack for instance.
Then the MS starts tracing back to identify the attacker which
will be described in the next subsection. When the attack
stops and the network settles back to the normal stage, Yn

is still likely to have a much bigger value than θ. This will be
treated as a false alarm. So a slight modification to the non-
parametric Cusum algorithm is required. If the attack stops,
we can take note of the downhill curve over some period
of time. However a clever attacker may actually lower the
attack rate or aggressiveness to evade detection. To counter
such a scenario, we employ a cluster based approach. In this

approach, as soon as an anomaly is detected, the MS creates
a new profile excluding the suspicious clients. That is, we are
executing Cusum consecutively (i.e., two Cusum instances).
The MS continues to monitor the Cusum distribution based on
the initial profiling to see if the attack actually subsides. At
the same time, the second monitoring process continues to run
using the most recently created profile. Upon detection of an
anomaly in this second instance of the Cusum distribution, the
MS will build yet another profile. In this way, we dynamically
construct new profiles and accordingly adjust the threshold.

Traceback Phase

The traditional traceback schemes include packet marking
techniques [14] such as Probabilistic Packet Marking (PPM),
ITrace, Deterministic Packet Marking (DPM), and logging
techniques such as Source Path Isolation Engine (SPIE). Most
of these schemes require the IP-header information. This
requirement poses difficulty in tracing back an attacker which
sends encrypted packets. In order to use these traditional trace-
back methods at the MS level, the MSs may need to decrypt
the headers of the attack packets. However, the encrypted
packets are to be decrypted only by the target server, not
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Fig. 4. No. of failed sessions seen at MS-2 & MS-1.

by the MSs which are only meant to sniff the packets and
use previously mentioned schemes to detect attacks. Secondly,
decrypting packets at MSs will incur overheads. Therefore,
when cryptographic protocols are in use, the commonly known
traceback approaches may not provide efficient traceback.

So we adopt an approach similar to that in [15] for tracing
back attackers. In this approach, although it may not be
possible to track back the actual attacker based on IP due to
encrypted headers, we can trace back to the network or domain
from which the attacker launched the attack. From thereon,
the authorities of that network can hunt down the attack host,
which is beyond the scope of our work. Using this approach,
in case of cryptographic protocols like SSH or SSL, the MSs
monitor failed sessions over time and correlate these patterns,
to identify the path of attack traffic. For instance, Fig-1 shows
an example where the attacker launches an attack against the
cryptographic server. There are 4 MSs distributed over this
network. The attack packets traverse the routers which are
monitored by MS-1, MS-2, and MS-3. MS-1, which is closest
to the victim server, detects the attack, generates alerts and
exchanges information with MS-2, its neighboring monitoring
stub. MS-2, in turn, sends inquiries to its neighboring MSs,
MS-1 and Ms-3. The observation at MS-2 at time t is shown in
Fig-4(a). After (t+ξ) seconds, similar record of failed sessions
over the same length of time, δt, is noticed at MS-1 (Fig-
4(b)), where ξ is the propagation delay between MS-1 and
MS-2. Thus, we can reconstruct the path back to the attacker’s
network. Owing to space limitation, we have not included the
traceback results but will focus on evaluating the proposed
detection scheme.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

A custom simulator was designed with a SSH server and
a SSH traffic generator at the client end. The server ran on
OpenSuSE Linux 10.1 with 3.2 GHz processor speed and 1 GB
memory. The server supported protocol versions were SSH-
1 and SSH-2. OpenSSH Traffic Generator/Simulator ran on
Windows XP, and the protocol version used was SSH-2.

As shown in Fig-5, M is the number of valid users in the
SSH server while N is the number of users in the database
including some valid and non-valid users in the simulator. Let
(µ = (N -M )/N ) denote the “attack aggressiveness”. Some
valid users may make typing mistakes, and so we consider
µ ≤ 0.05 to be in the acceptable range.

OpenSSH 
Server

With ‘M’ Valid 
Users

MySQL DB (N users: M being 
valid.)

Open SSH Traffic Generator

1. Randomly reads 
username/password

2. Opens SSH connection

Client side

Background Traffic Generator

3. Analyze log & Extract:
- No. of failed sessions
- No. of total sessions

Fig. 5. Simulation setup.

B. Simulation Scenario and Results

A normal profile was created by using µ=0.05 with sampling
interval, ∆=5s. As described earlier, β is selected to be the
average of the upper values of Fn. The mean of Fn, m,
was 0.036, derived during the profiling period. Threshold θ
was calculated using Equation(2). The average β and θ were
initially computed to be, respectively 0.31 and 0.34. For lower
β and corresponding θ, the time to the first false alarm was
rather short, as shown in Table-I. For higher β values starting
from 0.30 to 0.32, false alarms were not encountered during
the observation period of one hour, thus justifying our selection
of β.

TABLE I

Time to encounter first False alarm (TF ) for different

values of β (observation time: 1 hour).

β TF (s) β TF (s)

0.05 10 0.22 380
0.08 55 0.25 454
0.1 60 0.28 1,667

0.13 66 0.30
0.16 120 0.31
0.19 135 0.32

To investigate the detection sensitivity of the adopted ap-
proach, a number of SSH password attacks were then launched
by varying µ from 0.2 to 0.95. For different values of µ, the
latency to detect the attack was computed. Fig-6(a) shows the
detection delays for detecting attacks with different values of µ
using the proposed method. Five simulation runs per µ were
performed, and the average values are plotted. The attacks
with lower µ took more time to be detected. The detection
delays for µ = 0.2, 0.25, and 0.3 were, respectively, 180s,
135s and 116s. The attack profiles with lower µ do not deviate
much from the normal profile. This accounts for the high
latency for detecting attacks with lower values of µ. For µ-
values between 0.3 and 0.4, the latency started to decrease
substantially. Between µ = 0.4 and 0.5, the detection delay was
approximately 20s on average. The latency started to gradually
drop further from µ = 0.55, and was about 15s upto µ = 0.65.
The average latency for µ between 0.7 and 0.85 was about
10 seconds. It took the least time, 8s and 6s, respectively, to
detect the most aggressive attacks with µ = 0.9 and 0.95. These
results indicate that attacks with aggressiveness below 0.4 are
harder to detect while those with µ over 0.5 are more easily
and quickly detectable.
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Fig. 6. Simulation results.

Fig-6(b) shows the “Failed session detection error rate”, σ,
which is expressed by:

σ = Number of undetected failed sessions
Total Number of failed sessions · (3)

As seen from the results, σ was significantly high for
the attacks with lower µ. The reason behind this is the
overwhelmingly high number of undetected failed sessions
accumulated during the high detection-latency in contrast with
the moderate number of detected failed sessions during the last
sampling interval. For example, the values of σ were 0.91, 0.90
and 0.87, respectively, for µ = 0.2, 0.25 and 0.3. The values
of σ decreased gradually along with the aggressiveness of the
attack. For attacks with µ = 0.45 and above, the values of σ
dropped substantially. The lowest σ (0.33) was encountered
during the attack with µ = 0.95.

In summary, these results show that the proposed scheme
exhibits reasonably small detection delays. In case of attacks
with significantly high attack-aggressiveness, the detection
delays were only about two sampling intervals. The “Failed
session detection error rate” increases when the system is
detecting an attack with low attack-aggressiveness. Apart
from this limitation, the proposed scheme achieves effective
detection.

V. CONCLUDING REMARKS

In this paper we have proposed an Intrusion Detection
System to detect attacks against cryptographic protocols. The
proposed IDS is based on distributed monitoring stubs which
use non-parametric Cusum algorithm to learn normal network
scenario and detect anomalies online. We have performed
simulations and demonstrated the effectiveness of the detection
technique. Our investigations have considered the attack detec-
tion delay and the “failed session detection error rate”. Further-
more, monitoring stubs are also equipped with traffic-pattern
based traceback to track down the attacker. Our future work
will extend the proposed scheme to combat against attacks on
encrypted protocols in the wireless network environment.
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