
Ensuring end-to-end QoS based on multi-paths
routing using SDN technology

Diego Leonel Cadette Dutra 1, Miloud Bagaa 1, Tarik Taleb1 and Konstantinos Samdanis2

1 Dep. of Communications and Networking School of Electrical Engineering, Aalto University, Espoo, Finland
2 Huawei European Research Center, Munich, Germany

Emails:{firstname.lastname}@aalto.fi; konstantinos.samdanis@huawei.com

Abstract—Software Defined Networking (SDN) is an
emerging technology that will play an important role in
enabling 5G, since it offers enhanced network management
features. SDN allows programmability of the control plane,
abstracting the underlying network infrastructure for ap-
plications and network services, e.g. through the OpenFlow
protocol. In this paper, we propose a solution that enables
the end-to-end Quality of Service (QoS) based on the
queue support in OpenFlow, allowing an operator with a
SDN-enabled network to efficiently allocate the network
resources according to the users’ demands, reducing or even
eliminating the need for over-provisioning. For each traffic
flow, the proposed solution guarantees the required end-
to-end QoS, while efficiently managing the utilization of
open virtual switches (OVSs), which leads to reduced cost.
The cost could be also reduced as a fewer number of OVSs
are needed, which are enabled in different data centers. For
ensuring these objectives, the proposed solution explores
the strength of multi-path routing based on SDN with a
precise bandwidth allocation. The obtained results show
the efficiency of the proposed solution in terms of cost and
execution time.

I. Introduction

Mobile network operators have been commonly ac-
commodating high QoS applications by over provision-
ing network resources to assure the desired service
performance considering peak demands. Such a process
becomes complex and more challenging with the evo-
lution of a plethora of new applications and services
with stringent performance demands [1], [2], [3], [4].
To efficiently address such a challenge in the 5G era,
network programmability solutions such as Software
Defined Networks (SDN) [5], [6] are introduced into the
mobile network architecture to bring flexibility in the
resource allocation process [7], [8]. In particular, this
paper explores the QoS queue support in OpenFlow that
allows an operator with a SDN-enabled transport net-
work to efficiently allocate network resources reflecting
evolving users’ demands [9]. Such an approach enables a
fine tuning in resource allocation improving the network
utilization, while assuring QoS provisioning, in terms of
bandwidth and jitter. Nevertheless, the efficiency of the
aforementioned solution requires a frequent recomputa-
tion of the allocated resources, ideally considering every
arriving and hand-over user.

We are interested in computing a network configura-
tion that can be applied via a SDN controller, e.g., ONOS.
Such a configuration will use the queue control available
on version 1.3 of the OpenFlow protocol to allocate
an end-host connection that may simultaneously use
multiple paths. Such multipath capability is transparent
to end-hosts, which are not aware of flows splitting.
For example, a mobile user that streams a Video on
Demand (VoD) via the proposed SDN network, requires
the mobile operator to allocate the desired bandwidth
once the streaming request is accepted and initiates
the streaming upon receiving such a confirmation. This
simple example highlights an important promise of our
solution regarding the establishment of QoS, which is in
need of admission control, a process that may use appli-
cation level information as described in our example or
be applied based on the user profile, based, in turn, on
the contract with the mobile network operator.

This paper introduces an optimization solution for the
configuration of a SDN-enabled mobile network, and
develops and evaluates the proposed solution. It also ex-
perimentally demonstrates that in case of our proposed
solution, the computational cost increases linearly with
the number of end-nodes and exponentially with the
number of OVSs.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III de-
scribes our network model and our proposed solution.
Section IV presents the performance evaluation and our
results analysis. Finally, Section V concludes the paper.

II. Related work

Network programmability and SDN control is entering
a mature phase with several contributions focusing on
efficient resource allocation, especially for mobile sys-
tems. Egilmez et al. [10] introduces a solution using
OpenFlow QoS to guarantee the end-to-end bandwidth
for video streaming. The proposed solution assumes that
the SDN controller manages the complete network with
the clients being stationary during the entire transmis-
sion time. Egilmez and Tekalp [11] extended such initial
proposal introducing multiple controllers considering
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a distributed scenario. In this environment, every Au-
tonomous System (AS) performs an optimal QoS routing
and, in a subsequent step, uses a summarized network
view to perform inter-AS QoS routing. The authors have
shown that the proposed distributed solution approxi-
mates the global optimum while providing scalability,
but as in their original paper, it still assumes stationary
clients for the entire video transmission.

Sharma et al. [12] proposed a QoS framework based
on SDN using the Floodlight controller. Their proposal
uses a single controller per AS that communicates with
a bandwidth broker through a northbound API, which is
responsible for maintaining the respective policies and
for performing the SLA negotiation with end customers
or neighboring brokers. Celenlioglu and Mantar [13]
proposed a routing and resource management model
considering pre-established paths with resource reser-
vation for SDN-based intra-domain networks. Such a
scheme improves routing scalability and decreases the
admission time assuring QoS guarantees to stationary
nodes.

Jinyao et al. [14] proposed HiQoS, a SDN-based mul-
tipath solution to guarantee QoS on computer net-
works. HiQoS uses the OpenFlow queuing mechanisms
to implement bandwidth guarantees for different traffic.
In their solution, the multipath is achieved using a
modified Dijkstra algorithm with QoS constraints. Tariq
and Bassiouni [15] proposed a QoS-Aware algorithm
for optical SDN considering Multipath-TCP (MPTCP) in
data center environments, named QAMO-SDN. Such a
proposal precomputes multiple paths based on Dijkstra’s
algorithm and selects P paths between two end-nodes.
Their simulations showed that QAMO-SDN closely ap-
proximates MPTCP (P = 4) without compromising the
throughput of the low priority burst traffic.

Huang et al. proposed [16] and experimentally eval-
uated [17] an SDN multipath solution for GridFTP
based on Dijkstra’s algorithm, which is implemented in
Trema [18]. Hussain et al. [19] evaluated a hashed based
multipath solution using Floodlight, with their proposal
concentrating on scheduling the available flows using a
hash function over a set of precomputing paths. Also, Ba-
sit et al. [20] proposed a cross-layer coordination among
ISPs, peering at multiple IXPs, that enables the use of
the available multipath between the end-hosts. MPTCP
can leverage on these different paths to enhance the
throughput. Unlike other proposals, our soltuion adopts
the SDN paradigm to enable an end-to-end Quality of
Service (QoS) based on queue support in OpenFlow
and multi-path routing, allowing an efficient resource
alllocation considering service demands.

III. Network model and problem formulation

Let G(V ,E,W ) denote a weighted graph, where V
represents a set of nodes and E the set of edges in the

network. V = C ∪ O ∪ S , where C, O, and S denotes a
set of clients, a set of open virtual switches, and the
set of servers in the network, respectively. Each edge
is associated with a weight W , where Wu,v of an edge
(u,v) ∈ E, denotes the bandwidth capacity between nodes
u and v.

Table I
Notations used.

Notation Description
C A set of clients in the network.
O A set of open virtual switches in the network.
S A set of servers in the network.
G(V ,E,W ) A graph that shows the network topology, where

V = C ∪O ∪S , E denotes the set of edges. Mean-
while, W denotes the bandwidth communication
between different nodes in V . ωi,j ∈ W denotes
the bandwidth capacity between i, j ∈ V .

Xi,j A decision boolean variable that shows if a node
i selects j as parent.

Yo A decision boolean variable that shows if a switch
o ∈ O is selected to forward the traffic or not.

Ti,j A real number variable represents the amount of
traffic that would be forwarded from i to j.

η(u) A function that returns the neighbors of node u
in graph G.

F si,j An integer variable that mimics packet flow gen-
erated from different clients towards server s.

We assume that each client c ∈ C can be in the proxim-
ity of a set of OVSs, that act as base stations or eNodeBs.
A client can be connected to a set of OVSs at any given
time. Each switch in the network is associated with a
set of clients and neighbor switches. Let η(u) represent
the set of neighbors of a node u ∈ V . Assuming that
each client requires a single specified service at a time
from a corresponding server with certain bandwidth, we
are interested in handling different client requests that
require different QoS. Without loss of generality, if a
client is interested in N services, simply we replicate
that client by N , with each one concentrating on a spec-
ified service. We denote by Ss for s ∈ S , the set of clients
that consume a service offered by a particular server,
formally

⋃
s∈S
Ss = C. Each client c ∈ C requires a specified

bandwidth Bc for different services. The notations used
in this paper are summarized in Table I.

A. Proposed solution: Full paths re-computation

Hereafter, we describe our solution to guarantee the
end-to-end QoS in our model. In this solution, we re-
compute our OVS configuration every time a new client
arrives in our network or when a mobile user is handed-
over to a new eNodeB with the aim of reducing the
number of OVS activated in the core network. For all
u ∈ C∪O and v ∈ O∪S , we define the following variables:
Xu,v , which is a Boolean variable that shows if u selects

v as its successor.

Xu,v =
{

1 If u selects v as parent
0 Otherwise (1)

Tu,v , which is a real number that shows the amount of
traffic that can be forwarded from u to v.



For each switch o ∈ O, we define the following vari-
able:

Yo =
{

1 If o is selected to forward the different traffic
0 Otherwise (2)

For each server s ∈ S , we define a matrix F s of integer
variables that mimic the traffic generated and forwarded
to that server. Each element F si,j represents the number
of flows that shall be forwarded from i to j, whereas
i ∈ C ∪O and j ∈ O ∪S .

In the Objective Function 3, we aim to minimize the
number of switches used when all paths between clients
and requested servers are super-positioned. Meanwhile,
the constraints used ensure the following conditions:
Constraint 4 ensures that each client in the network
forwards its traffic through only one OVS switch (par-
ent); Constraint 5 represents the traffic aggregated from
a Client to its Servers that go through its parent; Con-
straint 6 ensures that all traffic that goes in an OVS from
its neighbors η(i), clients or other OVSs must be output
by that said OVS to η(i), be it servers or other OVSs; Con-
straint 7 ensures that no extra network traffic is created
in the OVSs for the clients; Constraint 8 and Constraint 9
ensure that an OVS is only selected to forward the traffic
if it is a parent in the path between a client and a
server; Constraint 10 ensures that the number of flows
arriving in a server is equal to the number of clients
that requested that server; Constraint 11 limits to one
the number of flows a client can generate to each server
in our topology; Constraint 12 ensures that all traffic F
from a client directed to a server S goes to that server;
Constraint 13 forces the generated flow to be routed
only within the constructed tree, from each node i to
its parent j, avoiding loops.

min
∑
∀i∈O
Yi (3)

s. t.

∀i ∈ C :
∑

∀j∈η(i)
Xi,j = 1 (4)

∀i ∈ C,∀j ∈ η(i) : Ti,j =
∑

∀s∈S∧i∈Cs
λsi ×Xi,j (5)

∀i ∈ O :
∑

∀j∈η(i)∩(C∪O)
Tj,i =

∑
∀j∈η(i)∩(O∪S)

Ti,j (6)

∀i ∈ C ∪O,∀j ∈ η(i)∩ (O∪S) : Ti,j ≤Wi,j ×Xi,j (7)

∀i ∈ O,∀j ∈ η(i)∩ (O∪S) : Xi,j ≤ Yi (8)

∀i ∈ O,∀j ∈ η(i)∩ (O∪C) : Xj,i ≤ Yi (9)

∀i ∈ S :
∑

∀j∈η(i)
F ij,i = |Ci | (10)

∀s ∈ S ,∀i ∈ Cs :
∑

∀j∈η(i)
F si,j = 1 (11)

∀i ∈ O,∀s ∈ S :
∑

∀j∈η(i)∩(C∪O)
F sj,i =

∑
∀j∈η(i)∩(O∪S)

F si,j (12)

∀s ∈ S ,∀i ∈ C ∪O,∀j ∈ O ∪S : 0 ≤ F si,j ≤ |Cs |×Xi,j (13)

Fig. 1 serves as a detailed example that illustrates the
operation of our proposed solution. The figure repre-
sents a simple mobile network, which consists of four
eNodeBs, a set of OVSs numbered from 1 to 8 and two
servers. Also note that for clarity, we suppressed the SDN
controller from Fig. 1. A mobile user that wants to access
a server using our network needs to attach to one of the
available eNodeBs.

Fig. 1(a) illustrates the network in its initial con-
figuration, showing the bandwidth resources partially
in use as highlighted by the red numbers. Based on
this topology, we compute our reference graph G that
removes all used resources as depicted in Fig. 1(b). Fig.
1(c) depicts the network attach moment for UE 1, which
is interested in a service from Server 1. That service
requires 50Mbps bandwidth, which enforces the UE 1 to
attach to eNodeB 2, which can comply with this demand.
We assume, without compromising our solution, that
simultaneously UE 2 arrives, which needs to initiate
(Fig. 1(e)) a new request to Server 2. Executing our
optimization solution considering both clients and G as
input parameters, we get as output the configuration
represented by Fig. 1(f). The links allocated for UE 1
and UE 2 are shown in black and in red, respectively,
while the activated OVS are depicted in red.

Fig. 1(g) presents our network after both mobile users
have been accepted. For UE 1, the required 50Mbps
has been allocated at eNodeB 2, via multiple paths that
facilitate communication between the corresponding UE
and Server 1 using both OVS 4 and 7. For UE 2, a
single path is allocated towards Server 2 to provide
the required resources. This simple example illustrates
the constraints that were described in our optimization
solution. As stated in Equation 3, we minimize the
number of activated OVS in our final configuration as
Fig. 1(g) shows. Constraint 4 can be seen in practice in
Figs. 1(d) and 1(f). All input traffic in a OVS is equal to
the said OVS output traffic, as required by constraint 6.

Algorithm 1 summarizes these constraints. For every
new user that arrives or is handed-over, the path of each
client has to be recomputed. This algorithm is trigged
by the arrival of a new client or by the mobility of an
existing one. The input parameters for our solution are
the graph G considering the new client(s) that request a
path and an updated version of the existing paths from



(a) Network view showing
bandwidth in use in red
and total bandwidth in

black.

(b) Computed graph of the
topology removing the

bandwidth currently in use.

(c) UE 1 arrives and requests
50Mpbs from eNodeBs 1 and 2.

(d) Network operator allocates
50Mpbs using multiple paths in
the transport network between

UE 1 and Server 1.

(e) Arrival of UE 2. (f) Network resources allocated
for UE 1 and UE 2.

(g) Network resources reference
graph is recalculated.

Figure 1. Example of our proposed solution for E2E QoS guarantee.

Algorithm 1 Algorithm to Compute Network Configu-
ration.
Require:
G: Graph representation of the network.
C: List of new/updated clients.
S : List of server in the network.

while true do
if c in C == (new or moved) then

return computeSDNconf ig(G,C,S)
end if

end while

each client to the corresponding server on the network.
Every time the algorithm returns a new configuration,
the main control loop is re-executed waiting for any
update in our network topology.

IV. Simulation Setup and Result Analysis

This section introduces our simulation setup and
presents the obtained results. Our experiments were
conducted on a multi-core server, described in Table II.

We evaluated the behavior of our solution by varying
the number of clients, servers, and OVSs. For each one
of these scenarios, we run 100 repetitions, changing the

Table II
Hardware Configuration.

Type Configuration
CPU Dual Intel Xeon E5-2680 v3 @ 2.5GHz
Memory 256GB
Linux Ubuntu 16.04
Kernel 4.4.0-72

client position and computed the number of OVS’s used
as well as the computational times. Hereafter, we present
the mean and 95% Confidence Interval of the number
of OVS’s used and the computational cost in seconds.
Moreover, in each of these scenarios, the positions of
clients, OVSs and servers were uniformly distributed. As
described in Section III, a client/server can be connected
to only one OVS.

Fig. 2 presents the behavior of our solution when
we vary the number of clients from 5 to 100, while
keeping both the number of OVSs and servers constant,
i.e. running our simulation with 25 OVS and 10 Servers.
In Fig.2, the left Y-axis shows the number of OVSs used,
while the right Y-axis shows the time in seconds spent to
find the solution and the X-axis represents the number
of clients in the network. Fig.2 shows that the number
of active OVSs increases from 4 to 6 when we vary the
number of clients 20 fold, while beyond 20 clients, the
mean number of OVSs starts to stabilize. Looking only at
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Figure 2. Varying the number of clients from 5 to 100.

the steady state part of our simulation, the mean number
of OVSs activated is 5.695 with a standard deviation of
0.134. Meanwhile, the results from the computational
time show that as the number of clients increases, the
computational cost increases linearly from 0.436 s to
9.421 s. The linear regression parameters for the mean
computational time of our experiment are 0.885 and
0.0897, as α and β, respectively.
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Figure 3. Varying servers from 1 to 10 with 25 clients.

Fig. 3 shows our evaluation with respect to the number
of servers, keeping the same representations as before for
the Y-axes, while the X-axis now shows the number of
servers in our network. We vary the number of Servers
from 1 to 10, while the number of clients and OVSs
are set to 25. It is observed that our results start to
stabilize after 2 servers, with a mean number of activated
OVSs of 5.416 and a standard deviation of 0.0889. In
this figure, the mean computational time to find the
solution increases linearly with the number of servers
in the network: the linear regression of these samples
returned 0.132 and 0.362, as α and β, respectively.

The obtained results suggest that the computational
cost increases linearly with the number of end-nodes.
To better understand this behavior in our proposed so-
lution, we devised two additional scenarios, whereby we
vary the number of servers and clients. Fig. 4 illustrates
that for all configurations of Server/Client, the mean
number of activated OVSs is close to 5.5, which implies
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Figure 4. Varying servers and clients.

that the number of activated OVSs has a high positive
correlation with the density of OVSs in the network
as this parameter was constant across these scenarios.
Moreover, as suggested by our previous results, the com-
putational cost still increases linearly with the number
of end-hosts, while it has a stronger correlation with
the number of clients than the number of servers, as
the comparison between the curves of 50 clients in this
figure and Fig. 3 suggests. This behavior is the result of
the number of flows being directly proportional only to
the number of clients in our network.
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Figure 5. Varying OVSs from 5 to 50 in 40x40 grid.

Finally, in Fig. 5, we run our simulations with 10
servers and 25 clients while varying the number of
activated OVSs between 5 and 50, over a grid of 40x40.
The number of activated OVSs is around 5 with a mean
value of 5.258 and a standard deviation of 0.251. As for
the negative slope that we see beyond a network with
20 OVSs, it is a consequence of the increase in the OVSs
density in our experiment, which raises the probability
of smaller paths connecting clients and servers. Further-
more, the increase in the OVSs density also causes an
increase in the number of links between them, which
also increases the number of possible paths and that is
the main reason for the exponential growth in compu-
tational cost.

This assumption is further corroborated by the results
of Fig. 6 whereby we show the same experiment but now
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Figure 6. Varying OVSs from 5 to 50 in a 80x80 grid.

over a 80x80 grid. The increase in the number of active
OVSs as the OVSs density increases is expected, since we
are only considering fully connected networks as input,
which reduces the number of valid input topologies. As
the confidence interval size suggests the curve starts to
stabilize around 16 OVSs, which is 3 times higher than in
the experiment of Fig. 5, and close to a 4 times increase
of our simulated area. Still in Fig. 6, we can see the same
exponential behavior in the computational cost, however
with a lower threshold. This indicates that the increase in
the number of links between the OVSs due to the higher
density of OVSs in our network is the main component
in the computational time to find the optimization for
our proposed solution, as described in Section III-A.

V. Conclusions

This paper introduces a SDN-based solution to assure
QoS guarantees without over-committing the network
resources to the users that request high bandwidth and
low jitter. This is achieved through a multi-path ap-
proach combined with a precise bandwidth allocation
through SDN QoS support. Our simulations showed that
our solution can find a network configuration that offers
theses QoS guarantees, while minimizing the number of
active OVSs in the network. Furthermore, our results
show that the computational cost to find a solution
increases linearly with the number of end-nodes, and
with a positive correlation with the number of clients.
Another important finding was that in its present form,
our solution computational cost has an exponential pos-
itive correlation with the OVSs density in our network.
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