
A Cost-Effective MTD Approach for DDoS Attacks

in Software-Defined Networks

Amir Javadpour

Faculty of Information Technology and Electrical Engineering

University of Oulu

Oulu, 90570 Finland

(e-mail: a.javadpour87@gmail.com)

Forough Ja’fari

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

(e-mail: azadeh.mth@gmail.com)

Tarik Taleb

Faculty of Information Technology and Electrical Engineering

University of Oulu

Oulu, 90570 Finland

(e-mail: talebtarik@gmail.com)

Mohammad Shojafar

5GIC & 6GIC, Institute for Communication Systems (ICS)

University of Surrey

Guildford, GU27XH, United Kingdom

(e-mail: m.shojafar@surrey.ac.uk)

Abstract—Protecting large-scale networks, especially Software-
Defined Networks (SDNs), against distributed attacks in a cost-
effective manner plays a prominent role in cybersecurity. One
of the pervasive approaches to plug security holes and prevent
vulnerabilities from being exploited is Moving Target Defense
(MTD), which can be efficiently implemented in SDN as it needs
comprehensive and proactive network monitoring. The critical
key in MTD is to shuffle the least number of hosts with an
acceptable security impact and keep the shuffling frequency low.
In this paper, we have proposed an SDN-oriented Cost-effective
Edge-based MTD Approach (SCEMA) to mitigate Distributed
Denial of Service (DDoS) attacks with a lower cost by shuffling
an optimized set of hosts have the highest number of connections
to the critical servers. These connections are named edges from a
graph-theoretical point of view. We have designed a system based
on SCEMA and simulated it in Mininet. The results show that
SCEMA has lower (52.5852.5852.58%) complexity than the previous related
MTD methods with improving the security level by 14.3214.3214.32%.

Index Terms—Software-defined networking (SDN), Moving
Target Defense (MTD), Distributed Denial of Service (DDoS),
Cost-effective, Edge-based Shuffling, Low-complexity.

I. INTRODUCTION

Software Defined Networks (SDNs) are an evolving trend in

computer network technology that effectively improves many

network services such as management and monitoring, virtu-

alization, distribution and integration. Controlling the network

traffic is assigned to a logically centralized component called

controller. The controller can create appropriate policies and

set related rules on the switches to forward network traffic [1].

However, SDNs are facing different security challenges among

which are Distributed Denial of Service (DDoS) attacks. DDoS

attacks are sophisticated and deleterious cyber threats that are

categorized as powerful large-scale distributed attacks. They

are becoming bigger and more common for extortion and

malicious activities [2]. Hence, there is an essential need to

perform security countermeasures against DDoS attacks.

Moving Target Defense (MTD) is one of the strategies to

protect valuable assets from being compromised by DDoS.

MTD intends to confuse the adversary by changing the attack

space (e.g. by shuffling network addresses) and aims to inval-

idate the information gathered during network reconnaissance

[3]. The advantages of MTD compared to other security

mechanisms are (1) their scalability, (2) almost removing

the need threat detection, and (3) frustrating the adversary.

Developing a network that can change its configuration and

implement MTD methods is challenging. However, as SDN

provides a dynamic manageable framework, it is a deserving

environment for implementing dynamic security mechanism

[4] such as MTD approaches.

Developing an MTD method must be cost-effective. There

is a trade-off between implementing a defensive approach and

its cost. The major part of MTD cost is related to the number

of reconfigurations and the MTD algorithm complexity. How-

ever, the previous works in this field focused on complicated

network features to reduce the number of reconfigurations.

To the best of our knowledge, all of them failed to reduce

the method complexity, and their execution time grows as the

network gets larger.

We proposed an MTD shuffling method that finds the

lowest-cost hosts to compromise and then shuffle them. The

feature that helps us find low-cost hosts is the number of

connections between the host and the critical servers. Since

the connections are modeled with edges in a graph, we call

the connections between the hosts and the servers edges.

Shuffling these important hosts takes lower cost and brings a

higher effect. Our proposed method is an SDN-oriented Cost-

effective Edge-based MTD Approach, and we call it SCEMA.

We attempt to find the best hosts for shuffling that can bring

more security against DDoS attacks. The main contributions

of this paper are as follows.

1) Proposing a low-complexity shuffling method, SCEMA,

that considers the number of connections between the978-1-6654-3540-6/22 © 2022 IEEE

TABLE I
THE SUMMARY OF RELATED WORK

Reference Evaluation Metrics Cost DDoS

[5] Attack success rate ✗ ✓

[6] Delay ✗ ✓

[7] Cost, packet loss ✓ ✓

TGCESA [8] Delay, packet loss, CPU load ✓ ✓

[9] Delay, attack probability ✗ ✗

[10] Response time, service rate ✗ ✓

[11] Threat score, service risk value ✓ ✗

[12] Delay, information disclosure ✗ ✗

[13] Packet loss, attack success rate ✓ ✓

[14] Defender’s success rate ✓ ✗

[15] Detection probability ✓ ✗

[16] Latency, reconnaissance cost ✓ ✓

[17] Attack graph generation time ✓ ✗

BAP [18] Delay, complexity, success rate ✓ ✗

SCEMA Complexity, adversary’s success
rate, compromised servers rate

✓ ✓

hosts and the servers (edges) as the main feature of

importance. By shuffling the hosts with the highest

number of edges, we can reduce the shuffling frequency,

while keeping the security level high.

2) Proposing a system that implements SCEMA and sim-

ulating it using Mininet. Multiple different network

topologies with several scenarios are considered in the

simulations. We also present the experimental results

that shows the effectiveness of SCEMA.

3) Presenting related metrics for measuring design goal

achievement and comparing SCEMA with two other

related MTD approaches. The shuffling algorithm com-

plexity is the metric for measuring MTD cost and the

adversary’s success rate and the compromised servers

rate are for measuring security level.

The remainder of this paper is as follows. section II consists

of the previous researches about the MTD methods. section III

explains the details of the proposed method, SCEMA, and

section IV proposes a system architecture that indicates how

to implement SCEMA in an SDN environment. section V

represents the evaluation results of simulating the proposed

system. And, finally, section VI gives the conclusion.

II. RELATED WORK

In this section we briefly describe the previous works about

using MTD methods in SDN to mitigate cybersecurity attacks.

The summary of these works is shown in Table I.

Steinberger et al. [5] implemented an MTD method with

the goal of showing that the success rate of DDoS attacks can

be decreased by using MTD in SDN. Luo et al. [6] proposed

a combined method of MTD and honeypot to improve net-

work security over DDoS attack in SDN. Aydeger et al. [7]

introduced an optimal MTD strategy to mitigate DDoS attacks.

The MTD strategy is modeled as a signaling game. A similar

gaming concept is used by Zhou et al. [8] and the MTD

approach is modeled as a trilateral game. To solve the trade-

off problem between MTD cost and its effectiveness, Markov

decision processes are employed for adopting the optimal

MTD algorithm, which is called TGCESA (Trilateral Game

Cost-Effective Shuffling Algorithm). Narantuya et al. [9] used

multiple SDN controllers in large-scale networks to improve

both the security and the performance of an MTD approach.

Liu et al. [10] proposed a hopping strategy in which the

switches change source and destination ports of the packets

to confuse the adversary and prevent him from launching a

DDoS attack. Chowdhary et al. [11] also employed a port

hopping MTD strategy to mitigate multi-stage attacks. Shi

et al. [12] proposed a flexible MTD method in which the

obfuscation level is variable. Debroy et al. [13] proposed

a frequency minimization MTD approach to secure SDN

applications against DDoS attacks.

Hyder and Ismail [14] used MTD to improve both control

and data plane security in SDN. Port shuffling and IP shuffling

are employed to prevent reconnaissance attacks in data plane.

Medina-López et al. [15] used MTD to find malicious nodes in

the peer to peer overlay SDN. When messages are exchanged

between peers, their destination IP address is changed. Chang

et al. [16] proposed a cost-effective MTD method in SDN

which randomizes the IP addresses and generates hash-based

signatures that can synchronize different MTD phases in the

network. Chowdhary et al. [17] used an SDN controller to mit-

igate cloud network attacks through network reconfiguration.

A three-tier model is proposed by Yoon et al. [18] which is

used to reduce MTD cost in SDN by finding an optimal set

of hosts for shuffling. A greedy backward attack path (BAP)

prediction algorithm is proposed in this work to find optimal

hosts to shuffle. In BAP, k most vulnerable attack paths from

the adversary to the critical servers are selected and the hosts

in these paths are shuffled. The vulnerability of each path is

calculated using attack graphs.

Only a few works have considered both MTD cost and

DDoS attacks. These works have some limitations such as

being appropriate for only cloud networks with virtual ma-

chines and high complexity in game theory and hash-based

approaches, that may cause delay and processing overhead on

the controller. So, we have decided to improve the method

proposed by Yoon et al. [18] (i.e. BAP) by considering the

connections between the hosts and critical servers, in order to

effectively mitigate DDoS attacks.

III. PROPOSED METHOD (SCEMA)

In distributed attacks, such as DDoS, the adversary creates

an army of compromised hosts and then sends a command to

that army to make all of them perform an attack on a specific

target within a specific time interval. Since the adversary tries

to perform the attack with the possible lowest cost, he searches

for the minimal set of hosts which can join his army and they

are enough to run the attack.

The proposed method in this paper, SCEMA, mainly aims

to reduce implementation cost while keeping the security level

unchanged or even higher. The more complex algorithms we

have, the more SCEMA costs. SCEMA attempts to find the

shuffled host with low complexity, but with an efficient result.

AAA

0.7 0.6 0.2 0.1 0.5

SSS SSS

AAA

0.7 0.6 0.2 0.1 0.5

SSS SSS

shuffling

AAA

0.7 0.6 0.2 0.1 0.5

1.1 1.1

attacking

(a) BAP solution: shuffling the hosts regarding their compromising cost

AAA

0.7 0.6 0.2 0.1 0.5

SSS SSS

AAA

0.7 0.6 0.2 0.1 0.5

SSS SSS

shuffling

AAA

0.7 0.6 0.2 0.1 0.5

0.9 ∞∞∞

attacking

(b) SCEMA solution: shuffling the hosts regarding the number of their connec-
tions to the servers

Fig. 1. Comparing the effectiveness of SCEMA and BAP in a sample network

To reach these goals, we try to improve the BAP method

[18]. In BAP, the critical paths which are more vulnerable than

the others are selected and then, all the hosts in these paths are

shuffled. The distributed nature of some attacks is not taken

into account in this work. In some cases, the vulnerable hosts

are less important than the hosts which can participate in the

adversary’s army to perform a distributed attack. Therefore,

we can find other hosts for shuffling that are more important

in DDoS attacks.

We introduce another parameter that can be measured in

lower complexity and get acceptable or even better results

in many cases. The adversary’s willing to find the minimal

army and the behavior of distributed attacks motivate us to

design a low-complexity MTD method that shuffles only the

hosts which have a higher number of connections to the

critical servers. In other words, we believe that the parameter

which can attract the adversary’s attention in many cases

is the number of neighbor servers, which we call edges,

for each host. In distributed attacks the group of hosts are

more important than the individual ones. Therefore, we should

concentrate on the connections between the hosts and the

critical servers (i.e. the edges) instead of the compromising

cost of each host. The hosts which are connected to more

critical servers are the best targets for the adversary’s army.

Figure 1 shows an example that compares SCEMA and

BAP. The cost of compromising each host and performing

DDoS attack to each critical server is shown in the nodes.

In BAP, the compromising cost of each host is important,

but in SCEMA the number of connections is important. This

example illustrates that performing a DDoS attack on all the

servers using our defensive method is impossible. However,

using BAP can cause an attack.

We have considered that the adversary’s target is launching

a DDoS attack on all the critical servers, which are more than

one. A network under such attack can be modeled as N =
(S, C), where S is the total number of critical servers and

C is an ordered set of hosts compromising costs. We have

C = {c1, c2, . . . , cH}, where ci indicates the minimum cost

SDNController

OpenFlowSwitch

Host

h2

Host

h3

Host

h1

Host

h4

Host
h5

WebServer
s1

DatabaseServer
s2

Host
h6

InternetExternal
Adversary

Internal
Adversary

Fig. 2. The topology of NE with two critical servers and six typical hosts

that the adversary must pay to compromise the ith host (i.e.

hi) and H is the total number of hosts.

We define a shuffling degree for each host. The shuffling

degree of the ith host, di, is the ratio of the number of servers

that are directly connected to that host to the total number

of servers. We believe that shuffling the hosts based on this

degree has a better performance than shuffling based on the

compromising cost.

A sample network, NE , is shown in Figure 2. We have

CE = {∞, 1.2, 0.9, 1.4, 0.9, 0.9}. We can figure out that the

first host, h1, does not have the vulnerabilities that lead

to a successful DDoS attack against the critical servers.

Or, for example, the compromising cost of h3, h5, and

h6 hosts are equal. The shuffling degrees of the hosts are

{1/9, 1/9, 2/9, 2/9, 2/9, 1/9}. BAP suggests selecting the

hosts for shuffling among the most vulnerable ones. So h3,

h5, and h6 are selected. But s1 has still three unblocked

connections. So another host which is connected to s1 must

be shuffled. As h2 has the lowest cost, it will be selected.

Now the set of hosts for shuffling is {h2, h3, h5, h6} with the

cost of 3.9. But SCEMA selects the hosts with the highest

shuffling degree. So we have to shuffle {h3, h4, h5} and the

hosts in this set can prevent the attack, because s1 and s2 have

less than three unblocked connections. The costs of this set is

3.2. Hence, SCEMA finds a lower-cost set of hosts compared

with BAP.

IV. SYSTEM ARCHITECTURE

We have designed a system in SDN that implements

SCEMA. This system contains four main components. Critical

servers, typical hosts, network devices, and an SDN controller.

Critical servers are the valuable assets in the network and the

network admin tries to prevent DDoS attacks against them.

The typical hosts are the vulnerable nodes in the network

that the adversary attempts to compromise to create his army

for performing a DDoS attack. The hosts and the servers

are connected through network devices, which are OpenFlow

switches in our case. The forwarding rules and management

messages are sent to the network devices by an SDN controller.

The controller uses five modules to implement SCEMA: NTD,

SDC, IAS, SID, and FEG.

Algorithm 1 SDC module procedure

ne← a list of H zeros ⊲ A list storing ne(hi) for each host
sum← 0 ⊲ A variable storing the sum of all the members in ne
for i← 1 to H do ⊲ A loop on all the hosts to calculate ne(hi)

for j ← H + 1 to H + S + 1 do

if ci,j = 1 then ⊲ If there is a connection

ne[i]← ne[i] + 1
sum← sum+ 1

d← a list of H zeros ⊲ A list storing di for each host
for i← 1 to H do ⊲ A loop on all the hosts to calculate di

d[i]← ne[i]/sum

A. Network Topology Discoverer (NTD)

NTD module uses OpenFlow Discovery Protocol (OFDP)

to figure out the current state of the network and its topology.

The different network nodes and their connections are found

and C can be generated. The network admin also provides the

vulnerabilities and their relations and also the list of critical

servers. Finally, NTD module generates the network model,

N , and passes this model to SDC module. This module is

triggered by network startup. Then the network topology is

discovered and passed to SDC module.

B. Shuffling Degree Calculator (SDC)

SDC module is responsible for finding the shuffling degree

of each host in the network. This module gets the network

model from NTD module and generates the shuffling degrees

of each host. di for every i is calculated in this module using

the information about the connection which is provided in

C. The algorithm performed by shuffling degree calculator

module is shown in Algorithm 1. The list of shuffling degrees

is then passed to SID module.

C. Shuffling Interval Detector (SID)

SID finds the hosts that must be shuffled according to

SCEMA. The required information is received from SDC

module. All the reconfigurations and shuffling processes are

performed at the beginning of a shuffling interval. Each

shuffling interval in our system is a fixed period of time and

lasts σ seconds. In each shuffling interval, each host has a

probability of being shuffled, which is its shuffling degree. So

hi is shuffled with a probability of di.
A flow entry timeout notifies SID module about shuffling

interval shifting. Hence, IDS checks the type of current

interval and generates the set of host that have to be shuffled

in that interval. We name this set as λ. λ is then passed

to FEG module for setting the related flow entries. The

OpenFlow message that indicates flow entry timeout is called

OFPT FLOW REMOVED. The algorithm of SID module is

shown in Algorithm 2.

D. IP Address Selector (IAS)

IAS module keeps a pool of IP addresses in the network

address range. Each address in the pool has a flag that avoids

conflicting between the used addresses. When a shuffling

process is performed and the hosts need another IP address,

Algorithm 2 SID module procedure

top← an empty list ⊲ A list storing µ+ ρ highest degree hosts
while top has less member than µ+ ρ do ⊲ A loop to create top

max← −1
for i← 1 to H do ⊲ Finding host with highest degree

if i is not in top then

if max = −1 or d[i] > d[max] then

max← i
add max to top

for each shuffling interval do
λ← an empty list ⊲ A list storing hosts for shuffling
for i← 1 to H do

r ← a random number between 0 and 1
if r < d[i] then ⊲ Adding the hosts to λ with di probability

add i to λ

IAS module selects a random address among the addresses in

its pool which its flag is not set. The random addresses are

passed to FEG module, and their flag is set.

E. Flow Entry Generator (FEG)

When a shuffling interval is detected by SID module, FEG

module gets the host information from SID module and then

requests new IP addresses, equal to the number of hosts in λ,

from IAS module. Finally, FEG module generates appropriate

flow rules according to the information received from SID and

IAS, and sets them on network switches.

V. EVALUATION

We have compared SCEMA with BAP [18] and TGCESA

[8] as they are comparable with SCEMA. But our main

focus is on comparing SCEMA with BAP. We have presented

appropriate metrics in this section to evaluate SCEMA and

compare it with BAP and TGCESA. The features of the

simulated networks are described, and the simulation results

are also illustrated in this section.

A. Evaluation Metrics

Our design goals are reducing the defense cost and retaining

the network security. So we need to measure appropriate

metrics to clarify high goal achievement as follows.

1) Algorithm complexity: Scalability is an essential feature

that a defensive mechanism should have. Hence, the algo-

rithms to find the important hosts and shuffling them in the

network must have a low complexity and a low implementation

cost to be scalable. Time complexity and space complexity can

be used to measure the algorithm complexity.

2) Adversary’s success rate: The adversary’s success rate

is the ratio of the number of experiments in which the

adversary reaches his goal to the total number of experiments.

A lower rate for the adversary’s success shows a better security

performance in SCEMA.

3) Compromised servers rate: Even though the adversary’s

success is reached only when all the servers in the network

are compromised, the number of compromised servers is

also important in measuring the security level. Compromised

servers rate can be calculated as the ratio of the number of

compromised servers to the total number of servers.

10 20 30 40 50 60 70 80 90 100

Number of Hosts

0

500

1000

1500

2000

2500

3000

3500

4000
T

im
e
 C

o
m

p
le

x
it
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

SCEMA

BAP, K=1

BAP, K=2

BAP, K=3

BAP, K=4

BAP, K=5

BAP, K=6

(a) Time complexity

10 20 30 40 50 60 70 80 100

Number of Hosts

0

0.5

1

1.5

2

2.5

3

3.5

S
p
a
c
e
 C

o
m

p
le

x
it
y
 (

K
B

)

SCEMA

BAP, K =1

BAP, K =2

BAP, K =3

BAP, K =4

BAP, K =5

BAP, K =6

(b) Space complexity

Fig. 3. Comparing SCEMA with BAP regarding their complexity

H=Number of Hosts , S = Number of Servers

0

50

100

150

200

250

300

350

400

T
im

e
 C

o
m

p
le

x
it
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

SCEMA

BAP, K=1

TGCESA

H=10

S=1-5

H=15

S=1-7

H=20

S=1-10

H=25

S=1-12

H=30

S=1-15

(a) Time complexity

 H=Number of Hosts , S = Number of Servers

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
p

a
c
e

 C
o

m
p

le
x
it
y
 (

K
B

)

SCEMA

BAP, K=1

TGCESA

H=30

S=1-15
H=25

S=1-12H=20

S=1-10

H=15

S=1-7H=10

S=1-5

(b) Space complexity

Fig. 4. Comparing the complexity of SCEMA, BAP, and TGCESA

B. Simulation Environment

We have simulated our system, implementing SCEMA, with

different network scenarios in Mininet. The hosts are con-

nected through OpenVSwitches and the switches are controlled

by a single POX controller.

In the simulation scenarios, the simulation time is 1000

seconds, and the each shuffling interval lasts for five seconds,

which means σ = 5. If third of the hosts which are connected

to a critical server are compromised, the adversary can perform

a successful DDoS attack against that server. The adversary

randomly scans the network address space, and his/her target

host is compromised in each probe with the probability of the

reverse of that host’s cost. When a host is compromised, it

can follow the adversary’s command to send a flooded traffic

toward the critical servers.

We have defined multiple different network topologies, in all

of which, the adversary’s node is directly connected to all the

host nodes. To prepare a fair condition for comparing different

methods with SCEMA, we have considered a fixed number of

shuffles in each interval of all the simulation scenarios.

C. Simulation Results

The obtained results of each metric mentioned in subsec-

tion V-A are presented in this section.

1) Algorithm complexity: The time and space complexity

of executing BAP and SCEMA are shown in Figure 3. In all

the cases the complexity of our proposed algorithm is less

than BAP. k is the number of hosts that are shuffled in an

interval. The diagram indicates that the time complexity of

[0-8] [9-13] [14-18] [19-23] [24-28] [29-33] [34-38] [39-43] [44-48]

Number of Hosts

0

10

20

30

40

50

60

70

80

90

A
d

v
e

rs
a

ry
's

 S
u

c
c
e

s
s
 R

a
te

 (
%

)

BAP

SCEMA

Normal

(a) Adversary’s success rate

[0-8] [9-13] [14-18] [19-23] [24-28] [29-33] [34-38] [39-43] [44-48]

Number of Hosts

0

10

20

30

40

50

60

70

80

90

C
o
m

p
ro

m
is

e
d
 S

e
rv

e
rs

 R
a
te

 (
%

)

BAP

SCEMA

Normal

(b) Compromised servers rate

Fig. 5. Comparing SCEMA with BAP and defenseless network (i.e. Normal)
regarding the adversary’s success and compromised servers rates

BAP is markedly increased as both k and network size are

increased. But our proposed algorithm is almost independent

of the network size. For comparing the complexity of SCEMA,

BAP, and TGCESA, all together, we have executed them in

different networks. Since the complexity of BAP grows as k
gets higher, we have only presented the results with k = 1.

TGCESA focuses on shuffling the servers instead of hosts. So

its complexity gets higher as the number of servers grows. The

time and space complexity are shown in Figure 4. We can see

that the complexity of BAP and TGCESA grows as the number

of servers increases. BAP and TGCESA also become more

complex when the number of hosts are increased. The hosts

which are connected to the shuffled server must be migrated

to another server in TGCESA. So the growth in TGCESA

complexity is reasonable in the case the hosts are growing.

The space complexity of SCEMA is not growing heavily;

Because only a simple array of size H + S can handle its

implementation. The time complexity of SCEMA has almost

a linear growth. The average result shows that the complexity

of SCEMA is 52.58% lower than BAP and TGCESA.

2) Adversary’s success rate: Figure 5(a) illustrates the

adversary’s success rate in different network topologies. It

is obvious that in a defenseless network, which we call

Normal, the adversary’s success rate is higher than the cases

utilize a defensive method. Moreover, in all the scenarios, the

adversary is more successful when he/she probes a network

that deploys BAP compared with SCEMA. This demonstrates

that SCEMA is effective in reducing the adversary’s success

rate by considering the number of edges as the main shuffling

parameter. According to the average results, SCEMA can

reduce the adversary’s success rate 14.32% more than BAP.

3) Compromised servers rate: The ratio of the compro-

mised servers is shown in Figure 5(b). Again, we see that

the a Normal network (i.e. without any defensive methods),

has a higher number of compromised servers compared with

the other cases. In addition, even though our goal is not to

reduce the number of compromised servers, we can see that

this metric has also a lower amount in SCEMA against BAP.

VI. CONCLUSION

This paper proposed an SDN-oriented Cost-effective Edge-

based MTD Approach, SCEMA, to efficiently mitigate DDoS

attacks. SCEMA finds an optimal set of hosts for shuffling

to reduce the cost of implementing MTD with acceptable

performance. The main idea of SCEMA is to shuffle the

hosts which have more connections to the critical servers.

We provide a system architecture that implements SCEMA

and simulated this system in Mininet to evaluate the metrics

relating to the design goals. We observe that SCEMA has

lower complexity than BAP, and its complexity is independent

of the attack path. Thus, it is a cost-effective solution and can

easily develop for large-scale networks. The results also show

that the security level is also higher than BAP.

ACKNOWLEDGMENT

This work was supported in part by the Academy of

Finland Project 6Genesis Flagship (Grant No. 346208) and

the EU’s Horizon 2020 research and innovation programme

under the INSPIRE-5Gplus project (Grant No. 871808). The

paper reflects only the authors’ views. The Commission is not

responsible for any use that may be made of the information

it contains. Mohammad Shojafar is supported by Marie Curie

Global Fellowship funded by European Commission with

grant agreement MSCA-IF-GF-839255.

REFERENCES

[1] A. Javadpour, “Providing a way to create balance be-

tween reliability and delays in sdn networks by using the

appropriate placement of controllers,” Wireless Personal

Communications, vol. 110, no. 2, pp. 1057–1071, 2020.

[2] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang,

“Dmaidps: a distributed multi-agent intrusion detection

and prevention system for cloud iot environments,” Clus-

ter Computing, pp. 1–18, 2022.

[3] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-

Asher, T. J. Moore, D. S. Kim, H. Lim, and F. F. Nel-

son, “Toward proactive, adaptive defense: A survey on

moving target defense,” IEEE Communications Surveys

& Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[4] F. Ja’fari, S. Mostafavi, K. Mizanian, and E. Jafari,

“An intelligent botnet blocking approach in software

defined networks using honeypots,” Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no. 2,

pp. 2993–3016, 2021.

[5] J. Steinberger, B. Kuhnert, C. Dietz, L. Ball, A. Sperotto,

H. Baier, A. Pras, and G. Dreo, “Ddos defense using

mtd and sdn,” in NOMS 2018-2018 IEEE/IFIP Network

Operations and Management Symposium. IEEE, 2018,

pp. 1–9.

[6] X. Luo, Q. Yan, M. Wang, and W. Huang, “Using mtd

and sdn-based honeypots to defend ddos attacks in iot,” in

2019 Computing, Communications and IoT Applications

(ComComAp). IEEE, 2019, pp. 392–395.

[7] A. Aydeger, M. H. Manshaei, M. A. Rahman, and

K. Akkaya, “Strategic defense against stealthy link flood-

ing attacks: A signaling game approach,” IEEE Transac-

tions on Network Science and Engineering, 2021.

[8] Y. Zhou, G. Cheng, S. Jiang, Y. Zhao, and Z. Chen,

“Cost-effective moving target defense against ddos at-

tacks using trilateral game and multi-objective markov

decision processes,” Computers & Security, vol. 97, p.

101976, 2020.

[9] J. Narantuya, S. Yoon, H. Lim, J.-H. Cho, D. S. Kim,

T. Moore, and F. Nelson, “Sdn-based ip shuffling moving

target defense with multiple sdn controllers,” in 2019

49th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks–Supplemental Volume

(DSN-S). IEEE, 2019, pp. 15–16.

[10] Z. Liu, Y. He, W. Wang, S. Wang, X. Li, and B. Zhang,

“Aeh-mtd: Adaptive moving target defense scheme for

sdn,” in 2019 IEEE International Conference on Smart

Internet of Things (SmartIoT). IEEE, 2019, pp. 142–

147.

[11] A. Chowdhary, A. Alshamrani, D. Huang, and H. Liang,

“Mtd analysis and evaluation framework in software

defined network (mason),” in Proceedings of the 2018

ACM International Workshop on Security in Software

Defined Networks & Network Function Virtualization,

2018, pp. 43–48.

[12] Y. Shi, H. Zhang, J. Wang, F. Xiao, J. Huang, D. Zha,

H. Hu, F. Yan, and B. Zhao, “Chaos: An sdn-based mov-

ing target defense system,” Security and Communication

Networks, vol. 2017, 2017.

[13] S. Debroy, P. Calyam, M. Nguyen, R. L. Neupane,

B. Mukherjee, A. K. Eeralla, and K. Salah, “Frequency-

minimal utility-maximal moving target defense against

ddos in sdn-based systems,” IEEE Transactions on Net-

work and Service Management, 2020.

[14] M. F. Hyder and M. A. Ismail, “Securing control and

data planes from reconnaissance attacks using distributed

shadow controllers, reactive and proactive approaches,”

IEEE Access, vol. 9, pp. 21 881–21 894, 2021.

[15] C. Medina-López, L. Casado, V. González-Ruiz, and

Y. Qiao, “An sdn approach to detect targeted attacks in

p2p fully connected overlays,” International Journal of

Information Security, pp. 1–11, 2020.

[16] S.-Y. Chang, Y. Park, and B. B. A. Babu, “Fast ip hop-

ping randomization to secure hop-by-hop access in sdn,”

IEEE Transactions on Network and Service Management,

vol. 16, no. 1, pp. 308–320, 2018.

[17] A. Chowdhary, S. Pisharody, and D. Huang, “Sdn based

scalable mtd solution in cloud network,” in Proceedings

of the 2016 ACM Workshop on Moving Target Defense,

2016, pp. 27–36.

[18] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-

Nelson, and H. Lim, “Attack graph-based moving target

defense in software-defined networks,” IEEE Transac-

tions on Network and Service Management, vol. 17,

no. 3, pp. 1653–1668, 2020.

